博碩士論文 984206030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:3.15.17.25
姓名 廖晉尉(Jin-wei Liao)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 考慮虛擬年齡與連續的利用率之最佳不完美維護策略
(A continuous time model for optimal policy of imperfect maintenance system with consideration of virtual age and utilization)
相關論文
★ 應用失效模式效應分析於產品研發時程之改善★ 服務品質因子與客戶滿意度關係研究-以汽車保修廠服務為例
★ 家庭購車決策與行銷策略之研究★ 計程車車隊派遣作業之研究
★ 電業服務品質與服務失誤之探討-以台電桃園區營業處為例★ 應用資料探勘探討筆記型電腦異常零件-以A公司為例
★ 車用配件開發及車主購買意願探討(以C公司汽車配件業務為實例)★ 應用田口式實驗法於先進高強度鋼板阻抗熔接條件最佳化研究
★ 以層級分析法探討評選第三方物流服務要素之研究-以日系在台廠商為例★ 變動良率下的最佳化批量研究
★ 供應商庫存管理架構下運用層級分析法探討供應商評選之研究-以某電子代工廠為例★ 台灣地區快速流通消費產品銷售預測模型分析研究–以聯華食品可樂果為例
★ 競爭優勢與顧客滿意度分析以中華汽車為例★ 綠色採購導入對電子代工廠的影響-以A公司為例
★ 以德菲法及層級分析法探討軌道運輸業之供應商評選研究–以T公司為例★ 應用模擬系統改善存貨管理制度與服務水準之研究-以電線電纜製造業為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這篇論文,我們主要是建立一個不完美的維護模型,結合了一連續時間的使用率並建立在一個虛擬年齡的模型下所求出的最佳維護策略.
在此論文將楊(2011)的模型從間斷時間的使用率改成連續時間的 等候線模型。實際上,我們知道每一段區間的使用率會受到上一期未完成的組件數量,區間長度以及到達率跟服務率比例的影響。此虛擬時間函數以Liu et al.(1995) 的概念為基礎,此函數可以更容易去分析失敗率因為失敗率函數不會改變。此函數會受到使用率、維護程度而對失敗率產生變化。因此虛擬函數受到這些因子影響後,會使得函數時間曲線回復。所以我們要決定最佳的PM次數及維護的長度在一固定區間的維護模型下,並且探討不同參數的變化對模型產生的影響。
摘要(英) In this study, our purpose is to construct an imperfect maintenance model, which combines utilization with continuous time and based on virtual age function, for computing the minimized expect total cost to decide an optimal policy.
We extend Yang (2010) for utilization to a continuous time Markov chain with queuing model. In practical, we know that utilization of every period will be decided by the service of the units are not completed in the end of last station, the length of the overhaul interval, and the proportion of arrival rate with service rate. Then, the concept of our virtual age function is based on Liu, Makis and Jardine (1995). This function can use to analyze failure time function more easy but it does not change. The utilization and degree of maintenance of the system are both affected by the failure intensity function with a virtual age function. Besides, the virtual age function will also be affected by two improvement factors that are general repair and PM action both restore the function curve to a certain degree. In this thesis, we will determine optimal PM times and general repair length over a finite planning horizon with a periodic replacement model, and show how it varies with parameters.
關鍵字(中) ★ 維護
★ 虛擬時間
★ 使用率
★ 連續時間馬克夫鏈
關鍵字(英) ★ utilization
★ virtual age
★ maintenance
★ overhaul
★ continuous time Markov chain
論文目次 中文摘要 i
Abstract ii
Content iii
List of Table v
List of Figure v
1. Introduction 1
1.1Background and motivation 1
1.2 Research objective 1
1.3 Research framework 2
2. Literature Review 4
2.1 Maintenance 4
2.2 Treatment methods for imperfect maintenance 5
2.2.1 Treatment method 1 - Age-dependent PM policy 5
2.2.2 Treatment method 2 - improvement factor method 6
2.2.3 Treatment method 3 - virtual age method 6
2.3 Utilization 7
3. The model 10
3.1 Model assumption 10
3.2 Utilization with continuous time 11
3.3 The virtual age function 14
3.3-1 The failure rate 15
3.4 The maintenance model and notations 16
4. Numerical study 19
4.1 Numerical examples 19
4.2 Sensitive analysis 19
5. Conclusion 25
6. Future research 26
Reference 28
參考文獻 [1] Abate, J., & Whitt, W. (1988). “Transient behavior of the queue via Laplace transforms. ” Adv. Appl. Prob , 20 (1), 145-178.
[2] Bai, D.S.& Seo J. H. (2004).“An Optimal Maintenance Policy for a System under Periodic Overhaul.” Mathematical and Computer Modelling , 373-380.
[3] Barlow, R., & Proshan, F. (1965). “Mathematical Theory of Reliability.” New York.
[4] Brown, M., & Proschan, F. (1983). “Imperfect repair.” Journal of Applied Probability 20, 85l-859.
[5] Bandopadhyaya, A. (1994), “An Estimation of the Hazard Rate of Firms Under Chapter 11 Protection,” The Review of Economics and Statistics 76 (2), 346-350.
[6] Chan, J.K. & Shaw L. “Modeling repairable systems with failure rates that depend on age and maintenance.” New York 1993: 566-571.
[7] Claude, D., P. and Matthew R. (1983) “Some New Results for the Queue.” Management Science Vol. 28, No. 7 821-828.
[8] CooperRobert. (1981). “Introduction to Queuing Theory”. Elsevier North Holland.
[9] Cox, D. R. (1972), “Regression models and life-tables.” Journal of the Royal Statistical Society Series B (Methodological), 34 (2), 187-220.
[10] Cleroux, R., S. Dubuc and C. Tiliquin. 1979. “The Age Replacement Problem with Minimal Repair and Rando Repair Cost. ” Opns. Res. 27, 1158-1167.
[11] Kijima, M. (1989), “Some Results for Repairable Systems with General Repair.” Journal of Applied Probability, 26, 89-102.
[12] Lie, C.H. and Y. H. Chun. (1986), “An algorithm for preventive maintenance policy, ” IEEE Transactions on Reliability R- 35/l, 71-75.
[13] Liu, X.G., V. Makis and A.K.S. Jardine (1995), “A Replacement Model with Overhauls and Repairs,” Naval Research Logistics, 42, 1063-1079.
[14] Malik, M.A.K. (1979), “Reliable preventive maintenance policy”, AIIE Transactions 1 l/3, 221-228.
[15] Nakagawa, T. (1984), “Optimal policy of continuous and discrete replacement with minimal repair at failure,” Naval Research Logistics Quarterly 31 (4), 543–550.
[16] Nakagawa, T. (1979), “Optimum Policies when Preventive Maintenance is Imperfect,” IEEE Transactions on Reliability R- 28/4,331-332.
[17] Nakagawa, T. (1981a), “A summary of periodic replacement with minimal repair at failure,” Journal of the Operations Research Society of Japan, 24, 213–228.
[18] Nakagawa, T. (1981b), “Modified periodic replacement with minimal repair at failure,” IEEE Transactions on Reliability R 30, 165–168.
[19] Nakagawa, T. (1988), “Sequential Imperfect Preventive Maintenance Policies,” IEEE Transactions on Reliability 37, 295–8.
[20] Pham, H. and H. Wang (1996), “Imperfect Maintenance,” European Journal of Operational Research, 94, 425-438.
[21] Pham, H. and H. Wang (1999), “Some maintenance models and availability with Imperfect maintenance in production systems, ”Annals of Operations Research 91, 305–318.
[22] Sheldon M. Ross (2003) “Introduction to probability models” 9-th 352-390
[23] Sheu, S., W. S. Griffith and T. Nakagawa, (1995), “Extended optimal replacement model with random minimal repair costs,” European Journal of Operational Research 85, 636–649.
[24] Sheu, S., C. Kuo and T. Nakagawa, (1993), “Extended optimal age replacement policy with minimal repair,” RAIRO: Recherche Operationnelle 27 (3), 337–351.
[25] Sheu, S., William S. and T. Nakagawa, (1995),“Extended optimal replacement model with random minimal repair costs.” European Journal of Operational Research 85, 636-649.
[26] Wang, H. (2002), “A Survey of Maintenance Policies of Deteriorating Systems.” European Journal of Operational Research 139, 469–489.
[27] Yang, R. S., (2010) “Optimal policy for imperfect maintenance system with consideration of virtual age and utilization.”
指導教授 葉英傑(Ying-chieh Yeh) 審核日期 2011-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明