博碩士論文 984208014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:3.145.55.25
姓名 高敏淳(Min-chun Kao)  查詢紙本館藏   畢業系所 財務金融學系
論文名稱 電力選擇權之定價-以均值回歸Lévy模型
(Pricing Electricity Option under a Mean Reversion Lévy Model)
相關論文
★ 從銀行業角度探討反向抵押貸款在臺灣實行之可行性研究★ 金融科技與監理沙盒對臺灣保險業影響之探討
★ 線上課程學習成效與影響之研究-以壽險從業人員為例★ 公司治理與風險性資本的關係:以美國壽險及健康險業為例
★ 實際波動度模型下的VIX選擇權定價★ 經濟供需模型評價死亡率債券
★ 保險業外匯價格變動準備金之研究★ 隨機模型建構在保險業現金流量測試之應用
★ Solvency II 量化分析──以反向抵押貸款為例★ 反向抵押貸款採用隨機房價模型之分析
★ VIX金融衍生性市場的價格發現和跳躍行為之研究★ 企業社會責任對上市公司獲利影響分析:以台灣50成分股為例
★ 權益連結年金保險之定價 — 考慮GARCH 效果★ 壽險保單準備金之有效存續期間分析─利率風險與死亡率風險
★ 運用關聯性結構方法及GARCH過程評價權益連結型年金內含二元選擇權★ 公司治理對台灣銀行業獲利 及逾放比的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電力市場在早期主要由政府高度控制,不存在價格風險,近年來各國政府開放政策後,使越來越多的民間廠商進入市場,消費者也可自由洽談購買電力。而電力與其他商品相比,具有不可存儲的特性,這使得電力價格決定於每個時間點的供需平衡上,波動性很大,像是電力需求大增,或是電廠產能突然下降,就會造成價格跳躍,也使電力的生產者與消費者皆面臨很大的風險。1990年開始有電力交易所的出現,而後幾年更推出電力衍生性商品,目的就是規避掉價格變動的風險。像對需要長期大量使用電力的工廠來說,可以透過購買電力選擇權,將成本鎖定在一定水準。但電力的特色使模型建構不易,很難做衍生性商品的定價,本文先沿用過去文獻做法將電力價格模型拆成季節趨勢部分與隨機變動部分,在隨機變動過程使用OU-type的均值回歸Lévy模型:OU-VG與OU-NIG模型建構,發現OU-VG配適結果較佳,接著模型經由Conditional Esscher Transform轉換到風險中立測度下,利用蒙地卡羅法模擬算出電力選擇權的買權價格。
摘要(英) In the past, the electricity market was controlled by the government so there was no price risk. Recently, governments have taken open policies. More and more private firms entered the market and consumers also could purchase power freely. Compared with other commodities, the price of electricity is determined by supply and demand at each point of time due to non-storability of electricity. If electricity demand rises or power production drops suddenly would cause the price to jump. The power producers and consumers face great risk because of high volatility of electricity price. Power exchanges began in 1990 and electricity derivatives whose purposes were to avoid the risk of price volatility were introduced in few years later. Firms which need huge amount of electricity can buy electricity options and control the cost. However, modeling electricity prices is not easy owing to the characteristics of electricity; it is also difficult to price electricity derivatives. Hence, this study splits electricity price model into seasonal trend and random change parts based on the past literatures. In random process, we use OU-type process of mean-reversion Lévy Model, OU-VG and OU-NIG model and find that OU-VG fits better. Subsequently, the model via Conditional Esscher Transform switches to risk-neutral measure and use Monte Carlo simulation to calculate the call price of power option.
關鍵字(中) ★ 電力選擇權
★ 均值回歸Lévy
關鍵字(英) ★ Mean Reversion Lévy
★ Electricity Option
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 V
表目錄 VI
第一章 緒論 1
第二章 電力市場介紹及文獻回顧 3
2.1電力市場 3
2.1.1 歐洲能源交易所(EEX) 4
2.1.2 電力價格特性 6
2.2 電力市場相關文獻 7
第三章 模型介紹與估計方法 10
3.1 季節週期趨勢 10
3.2 均值回歸模型 11
3.3 LÉVY模型 11
3.4 LÉVY OU模型 12
3.5模型估計方法 14
第四章 資料分析 15
4.1 季節趨勢模型 16
4.2 均值回歸參數 17
4.3 殘差項檢定 17
第五章 模擬與定價 20
5.1 現貨價格模擬 20
5.2 風險中立測度轉換 20
5.2 電力選擇權定價 22
第六章 結論 25
參考文獻 26
參考文獻 國外文獻
[1] Barndorff-Nielsen, O.E. ,”Normal inverse Gaussian distributions and stochastic volatility modelling”,Scandinavian Journal of Statistics , Vol. 24, pp.1-13,March 1997.
[2] Benth, F.E., and J. Saltyte-Benth,”Stochastic Modelling of Temperature Variations with a View Towards Weather Derivatives”,Applied Mathematical Finance,Vol. 12,Issue 1, pp. 53-85, 2005.
[3] Benth F.E., Meyer-Brandis T. and Kallsen J. ,“A non-Gaussian Ornstein-Uhlenbeck process for electricity spot price modeling and derivatives pricing”, Applied Mathematical Finance, Vol. 14, Issue 2, pp.153-169, May 2007.
[4] Carr, P., H. Geman, D. Madan, and M. Yor, “The Fine Structure of Asset Returns: An Empirical Investigation”, Journal of Business, 75, pp.305-332,2002.
[5] Cartea, A., Figueroa, M.G., “Pricing in electricity markets: a mean reverting jump diffusion model with seasonality”, Applied Mathematical Finance, Vol. 12, Issue 4,pp. 313–335,2005.
[6] Christophe Chorro , Guégan D., Ielpo F. ,” Option pricing for GARCH-type models with generalized hyperbolic innovations”, Centre d’Economie de la Sorbonne Working Paper No. 2010.23, July 2010.
[7] Claudia Klüppelberg, Thilo Meyer-Brandis and Andrea Schmidt, “Electricity spot price modelling with a view towards extreme spike risk”. Quantitative Finance, Vol 10, Issue 9, pp.963-974, November 2010.
[8] Clewlow, L. and Strickland, C.,” Energy Derivatives – Pricing and Risk Management “, Lacima Publications, London,2000.
[9]Collet, J.,Duwig, V.,Oudjane, N., “Some non-Gaussian models for electricity spot Prices”, Probabilistic Methods Applied to Power Systems , June 2006.
[10] Gerber H. U. and Shiu E. S. W., "Option Pricing by Esscher Transforms" ,Transactions of the Society of Actuaries, Vol. 46, pp. 99–191,1994.
[11] Kaminski V.,” The Challenge of Pricing And Risk Managing Electricity Derivatives”, The U.S. Power Market, pp.149-71, 1997.
[12] Liao, S. Shyu, D. Tzang, S. Hung, C. ,”A Garch process with timechanged L′evy innovations and its applications from an economic perspective” The Icfai University Journal of Financial Risk Management, Vol. 5, pp. 7-19, June 2008.
[13] Lucia, J. J. Schwarz., E. S.,”Electricity prices and power derivatives: Evidence from the nordic power exchange”, Review of Derivatives Research, Vol. 5,pp. 5-50,June 2002.
[14] Lung-fu Chang and Mao-wei Hung,” Analytical valuation of catastrophe equity options with negative exponential jumps”, Mathematics and Economics, Vol. 44, Issue 1, pp. 59-69,2009.
[15] Madan, D. B., P. Carr, and E. C. Chang ,” The variance gamma process and option
Pricing”,European Finance Review,Vol. 2, Issue 1,pp. 79-105,June 1998.
[16] Mayer, Klaus, Schmid, Thomas and Weber, Florian, “Modeling Electricity Spot Prices - Combining Mean-Reversion, Spikes and Stochastic Volatility”, CEFS Working Paper Series, No. 2, 2011.
[17] Michael Bierbrauer, Christian Menn, Svetlozar T. Rachev and Stefan Truck,“Spot and derivative pricing in the EEX power market”, Journal of Banking & Finance ,Vol 31, Issue 11, pp. 3462-3485, June 2007.
[18] Schwartz, E.S., “The stochastic behavior of commodity prices: Implications for valuation and hedging”, Journal of Finance, Vol. 52, pp. 923-973,July 1997.
[19] Weron Rafal, Simonsen I. and Wilman P., “Modeling highly volatile and seasonal markets: evidence from the Nord Pool electricity market”, The Application of Econophysics, Tokyo, Springer, pp. 182–192, 2004.
[20] Weron Rafal.,“Modeling and forecasting electricity loads and prices: A statistical approach ”,Wiley Finance Series, 2006.
國內文獻
[1] 王昭文,「考量房價跳躍風險下房屋抵押貸款保險之評價」,風險管理學報,第十二卷,第一期, 53~68頁,2010。
指導教授 楊曉文(Sharon S. Yang) 審核日期 2011-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明