博碩士論文 984203005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.219.207.115
姓名 黃柏翔(Po-hsiang Huang)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 從序列資料中找尋偏好圖的方法 - 應用於群體排名問題
(An Approach to Find Preference Graph from Sequence Data for Group Ranking Problem)
相關論文
★ 零售業商業智慧之探討★ 有線電話通話異常偵測系統之建置
★ 資料探勘技術運用於在學成績與學測成果分析 -以高職餐飲管理科為例★ 利用資料採礦技術提昇財富管理效益 -以個案銀行為主
★ 晶圓製造良率模式之評比與分析-以國內某DRAM廠為例★ 商業智慧分析運用於學生成績之研究
★ 運用資料探勘技術建構國小高年級學生學業成就之預測模式★ 應用資料探勘技術建立機車貸款風險評估模式之研究-以A公司為例
★ 績效指標評估研究應用於提升研發設計品質保證★ 基於文字履歷及人格特質應用機械學習改善錄用品質
★ 以關係基因演算法為基礎之一般性架構解決包含限制處理之集合切割問題★ 關聯式資料庫之廣義知識探勘
★ 考量屬性值取得延遲的決策樹建構★ 利用分割式分群演算法找共識群解群體決策問題
★ 以新奇的方法有序共識群應用於群體決策問題★ 利用社群網路中的互動資訊進行社群探勘
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在過去的十年中,如何從所有使用者的排名資料,取得其中一致的排名這個問題,由於其廣泛的應用,導致此問題日益受到重視。而此群體排名問題的應用主要是為了提供一個資料的綜合結果給決策者。傳統上。這問題的輸出可以分為兩種型態:排名序列與共識序列,而不幸的是,這兩種傳統的輸出都有各自的缺點。對於排名序列,大多數以前的辦法是最小化多個輸入資料之間的分歧,而取得代表大部分使用者共識的排名序列,但為了獲得一個完整的排名,他們會忽略使用者的資料可能會不一致或沒有共識的事實,而強迫進行排序。而對於共識序列來說,為了獲得最大的共識序列,可能導致許多共識序列,需要進行檢查,從而導致信息超載,乏味,不容易理解。並且從眾多的共識序列終,決策者難以掌握整個項目之間的關係。
  為了克服這些缺點,我們提出了一個框架,它產生的項目偏好圖代表使用者喜好資料的綜合結果。並開發一個演算法來決定使用者排序資料中的偏好圖形式。最後,進行了廣泛的實驗,使用合成和真實資料集。實驗結果表明,該方法計算效率高,能有效地識別所有使用者之間的共識。
摘要(英) In the last decade, the problem of getting a consensus group ranking from all users’ ranking data has received increasing attention due to its widespread applications. The group ranking problem is to construct coherent aggregated results from preference data provided by decision makers. Traditionally, the output of the group ranking problem can be classified into two types: ranking ordered lists and consensus lists. Unfortunately, these two traditional outputs suffer from their own weaknesses. For ranking ordered lists, most previous approaches pay close attention to minimize the total disagreement between multiple input rankings, to ultimately obtain an overall ranking list which represents the achieved consensus. They neglect the fact that user opinions may be discordant and have no consensus, in which we are still enforced to get a complete ranking result. For maximum consensus sequences, there may have many resulting consensus sequences which need to be checked, and thus lead to information overloading, tedious, and not easy to understand. As a result, users are difficult to grasp the whole relationship among items.
To overcome these weaknesses, we propose a framework which generates a preference graph of items to represent the coherent aggregated results of users’ preferences. And an algorithm is developed to determine the preference graph from the users’’ total ranking data. Finally, extensive experiments are carried out using synthetic and real data sets. The experimental results indicate that the proposed method is computationally efficient, and can effectively identify consensus among all users.
關鍵字(中) ★ 偏好圖
★ 決策制定
★ 資料挖掘
關鍵字(英) ★ preference graph
★ decision making
★ data mining
論文目次 Contents
Abstract I
摘要 II
致謝 III
Contents IV
List of Tables VI
List of Figures VII
Chapter 1 Introduction 1
1.1. Group ranking decision problem 1
1.2. Motivation 1
1.3. Example 2
Chapter 2 Related work 4
2.1. Completeness of preference information 4
2.2. Input format 5
2.3. Output format 6
2.4. Our work 6
Chapter 3 Problem definition 7
Chapter 4 Methodology 12
4.1. Step 1(Data transformation) 12
4.2. Step 2(Sort and group) 13
4.3. Step 3(Generate other chromosomes) 13
4.4. Step 4(Build the preference graph ) 13
4.5. Step 5(GA) 14
4.5.1. Produce chromosome 14
4.5.2. Evaluate the fitness 14
4.5.3. Reproduction 14
4.5.4. Crossover 15
4.5.5. Mutation 16
Chapter 5 Experimental results 17
5.1 Synthetic data generation 17
5.2 Run time comparisons 18
5.3 Objective function comparison 29
5.4 Scalability 41
5.5 Real case study 43
5.5.1. Belle dataset 43
5.5.2. Journal dataset 47
Chapter 6 Conclusions 53
Reference 55
Appendix A 57
Appendix B 58
Appendix C 60
參考文獻 [1] Cook, W. D., Golany, B., Kress, M., Penn, M., and Raviv, T., 2005, “Optimal Allocation of Proposals to Reviewers to Facilitate Effective Ranking,” Management Science, Vol.51, No.4, pp.655-661.
[2] Cook, W. D., Golany, B., Penn, M., and Raviv, T., 2007, “Creating a Consensus Ranking of Proposals from Reviewer's Partial Ordinal Rankings,” Computers & OR, Vol.34, No.4, pp.954-965.
[3] Fagin, R., Kumar, R., and Sivakumar, D., 2003, “Efficient similarity search and classification via rank aggregation,” Proceedings of the ACM SIGMOD International Conference on Management of Data, San Diego, California, pp.301-312.
[4] Cohen, W., 1999, “Learning to order things,” The journal of artificial intelligence research, Vol.10, pp.243.
[5] Beg, M. M. S., and Ahmad, N., 2003, “Soft computing techniques for rank aggregation on the World Wide Web,” World Wide Web-Internet and Web Information Systems, Vol.6, No.1, pp.5-22.
[6] Cohen, W., 1999, “Learning to order things,” Journal of Artificial Intelligence Research, Vol.10, pp. 243.
[7] Golden, B., 1989, The analytic hierarchy process: applications and studies, Springer, New York.
[8] Kemeny, J. G., and Snell, L. J., 1962, “Preference ranking: an axiomatic approach,” Proceedings of mathematical models in the social science, pp. 9–23.
[9] Kendall, M., 1955, Rank correlation methods, Third Hafner, New York.
[10] Robert, F. D., and Ernest, H. F., 1992, “Group decision support with the analytic hierarchy process,” Decision Support System, Vol.8, No.2, pp. 99–124.
[11] Saaty, T. L., 1987, “Rank generation, preservation, and reversal in the analytic hierarchy decision process,” Decision Sciences, Vol.18, No.2, pp. 157.
[12] Bogart, K., 1973, “Preference structures I: distances between transitive preference relations,” Journal of Math Sociology, Vol.3, pp.49–67.
[13] Bogart, K., 1975, “Preference structures II: distances between asymmetric relations,” SIAM Journal of Applied Math, Vol.29, No.2, pp.254–265.
[14] Cook, W. D., Kress, M., and Seiford, L., 1986, “An axiomatic approach to distance on partial orders,” Revue Automatique, Informatique et Recherche Operationnelle, Vol.20, No.2, pp.115–122.
[15] Cook, W. D., Kress, M., and Seiford, L., 1986, “Information and preference in partial orders: a bimatrix representation,” Psychometrika, Vol.51, No.2, pp.197–207.
[16] Cook, W. D., Kress, M., and Seiford, L., 1996, “A general framework for distance-based consensus in ordinal ranking models,” European Journal of Operational Research, Vol.96, pp.392–397.
[17] Greco, S., Mousseau, V., and Slowinski, R., 2008, “Ordinal regression revisited: multiple criteria ranking using a set of additive value functions,” European Journal of Operational Research, Vol.191, No.2, pp.416–436.
[18] Hochbaum, D. S., and Levin, A., 2006, “Methodologies and algorithms for group-rankings decision,” Management Science, Vol.52, No.9, pp.1394–1408.
[19] Borda, J. C., 1981, “Memoire sur les elections au scrutin,” Histoire de l'Academie Royale de Science, Paris.
[20] Bartholdi, J., Tovey, C. A., and Trick, M. A., 1989, “Voting schemes for which it can be difficult to tell who won the election,” Social Choice and Welfare, Vol.6, No.2, pp.157–165.
[21] Fagin, R., Kumar, R., and Sivakumar, D., 2003, “Efficient similarity search and classification via rank aggregation,” Proceedings of the ACM SIGMOD international conference on management of data, ACM, San Diego, California, pp. 301–312.
[22] Cook, W. D., Golany, B., Kress, M., Penn, M., and Raviv, T., 2005, “Optimal allocation of proposals to reviewers to facilitate effective ranking,” Management Science, Vol.51, No.4, pp.655–661.
[23] Damart, S., Dias, L. C., and Mousseau, V., 2007, “Supporting groups in sorting decisions: methodology and use of a multi-criteria aggregation/disaggregation DSS,” Decision Support Systems, Vol.43, No.4, pp.1464–1475.
[24] Cook, W. D., Golany, B., Kress, M., Penn, M., and Raviv, T., 2007, “Creating a consensus ranking of proposals from reviewer's partial ordinal rankings,” Computers & OR, Vol.34, No.4, pp.954–965.
[25] Chen, Y. L., and Cheng, L. C., 2010, “An approach to group ranking decisions in a dynamic environment,” Decision Support System, Vol. 48, No.4, pp.622-634.
指導教授 陳彥良(Yen-liang Chen) 審核日期 2011-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明