博碩士論文 984203035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.12.71.237
姓名 林星衛(Xing-wei Lin)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 以RFID為基礎的室內定位機制─使用虛擬標籤的經驗法則
(AVTL: Adaptable Virtual Tag Localization for indoor RFID location estimation)
相關論文
★ 具代理人之行動匿名拍賣與付款機制★ 網路攝影機遠端連線安全性分析
★ HSDPA環境下的複合式細胞切換機制★ 樹狀結構為基礎之行動隨意網路IP位址分配機制
★ 平面環境中目標區域之偵測 - 使用行動感測網路技術★ 藍芽Scatternet上的P2P檔案分享機制
★ 交通壅塞避免之動態繞路機制★ 運用UWB提升MANET上檔案分享之效能
★ 合作學習平台對團體迷思現象及學習成效之影響–以英文字彙學習為例★ 適用於實體購物情境的行動商品比價系統-使用影像辨識技術
★ 信用卡網路刷卡安全性★ DEAP:適用於行動RFID系統之高效能動態認證協定
★ 在破產預測與信用評估領域對前處理方式與分類器組合的比較分析★ 單一類別分類方法於不平衡資料集-搭配遺漏值填補和樣本選取方法
★ 正規化與變數篩選在破產領域的適用性研究★ 分群式前處理方法於類別不平衡問題之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 定位技術於各種領域的應用主題已廣泛地研究與討論,近年來隨著無線行動技術與應用概念的加入,室內定位的相關議題也陸續被提出。
本研究的目的在於透過使用主動式 RFID 設備提升室內環境下定位的準確度,並設計一套定位效能上相較於現有主動式 RFID 定位法更為優異的定位法。本研究運用虛擬標籤與經驗法則提出適應性虛擬標籤定位法 (AVTL) 。其中虛擬中點標籤主要為避免參考標籤的佈置密度過高所造成的相互干擾問題進行設計,在不增加實體參考標籤佈置密度下有效提升定位準確度且在虛擬標籤的計算複雜度上相較於 VIRE 定位法來得更低。為了有效提升定位準確度,本研究亦設計歷史經驗輔助機制,藉由佈置於定位環境中的參考標籤之歷史 RSSI 資訊,穩定參考標籤的 RSSI 訊號與標籤異常狀況處理,以期能達到更精確的定位準確度表現。
本研究透過模擬平台與實際測量進行LANDMARC法與VIRE法以及本研究所提出的 AVTL 法進行效能比較,根據實驗結果,本研究所提出的適應性虛擬標籤定位法在定位準確度、定位成功率表現上相較現有定位法皆來得優異,而在定位回應時間上亦較VIRE 法明顯來得省時,為一可有效替代現有 RFID 室內定位法的改善方法。
摘要(英) Positioning systems are one of the key elements required by location-based services. In this paper we use the active Radio Frequency Identification (RFID) devices to enhance the positioning accuracy in indoor environment and propose a localization scheme which performs better than the existing approaches for location estimation.
This paper presents the design, implementation and analysis of a positioning system called AVTL which applies Virtual midpoint tags and Empirical scheme. Virtual midpoint tag is designed to avoid mutual signal interference effect from high density deployment of reference tags. Compared to the VIRE approach, this approach not only improves the positioning accuracy without adding physical reference tags but also performs less computational complexity than VIRE approach. To improve positioning accuracy effectively, we design empirical scheme. This scheme copes with the abnormal behaviors of reference tags and thus makes the RSSI signal become more stable and adaptable. Therefore, the empirical scheme can make the objects locating more accurate.
Finally, we compare the performance of the proposed AVTL, LANDMARC and VIRE through Simulation and Experiment. The results show that the proposed AVTL approach all performs better than the existing approaches in positioning accuracy and success rate significantly. Moreover, the response time of AVTL approach also performs better than VIRE. In this paper, the proposed AVTL approach is more competitive than the existing approaches and can achieve high positioning accuracy via simulation and experiment.
關鍵字(中) ★ 經驗法則
★ 虛擬標籤
★ RFID
★ 室內定位
關鍵字(英) ★ RFID Systems
★ Indoor Localization
★ Virtual Tag
★ Empirical Scheme
論文目次 摘 要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
一、 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 1
1-3 論文架構 2
二、 背景與相關研究 4
2-1 無線訊號傳遞模型 (RF propagation model) 4
2-2 無線技術應用於室內定位設計 6
2-3 主動式RFID室內定位法 9
2-4 現有主動式RFID定位系統缺陷探討 13
2-5 解決方法 14
三、 適應性虛擬標籤定位法 (Adaptable Virtual Tag Localization, AVTL) 15
3-1 系統場景 15
3-2 虛擬中點標籤法 (Virtual Midpoint Tag Localization, VMTL) 16
3-3 歷史經驗輔助機制 19
3-3-1 歷史RSSI資訊 19
3-3-2 歷史記錄更新機制 ─ 滑動緩衝記錄 (Sliding buffer) 20
3-3-3 參考標籤行為判斷機制 21
四、 實驗方法與分析 24
4-1 模擬實驗設計 26
4-2 實際測量設計 29
4-3 虛擬中點標籤法 (VMTL) 定位實驗 31
4-3-1 實驗次數收斂值實驗 31
4-3-2 k-nearest neighbor參數實驗 34
4-3-3 虛擬中點標籤法 (VMTL) VS. VIRE定位法 37
4-4 適應性虛擬標籤法 (AVTL) 定位實驗 40
4-4-1 RSSI歷史緩衝記錄次數實驗 40
4-4-2 RSSI標準差門檻值範圍實驗 41
4-5 各定位法比較 43
4-5-1 定位誤差比較 43
4-5-2 定位成功率比較 47
4-5-3 定位回應時間比較 50
4-5-4 各定位法效能總結比較 52
五、 結論 54
文獻參考 56
參考文獻 [1] R. Tenmoku, M. Kanbara and N. Yokoya, “A wearable augmented reality system for navigation using positioning infrastructures and a pedometer,” in Proceeding of International Symposium on Mixed and Augmented Reality, pp. 344-345, 2003.
[2] F. van Diggelen, “Indoor GPS theory & implementation,” in Proceedings of IEEE Position Location and Navigation Symposium, pp. 240-247, 2002.
[3] C. C. Bill R., Kofahl M. and Mundt T., “Indoor and Outdoor Positioning in Mobile Environments - a Review and some Investigations on WLAN-Positioning,” Geographic Information Sciences, vol. 10, pp. 91-95, 2004.
[4] K. Singh and M. Ismail, “OTDOA location determining technology for universal intelligent positioning system (UIPS) implementation in Malaysia,” in IEEE 7th Malaysia International Conference on Communication, pp. 1057-1061, 2005.
[5] L.M. Ni, Y. Liu, Y.C. Lau and A.P. Patil, “LANDMARC: indoor location sensing using active RFID,” Wireless Networks, vol. 10, pp. 701-710, 2004.
[6] Y. Zhao, Y. Liu and L.M. Ni, “VIRE: Active RFID-based localization using virtual reference elimination,” in International Conference on Parallel Processing, pp. 4-8, 2007.
[7] T. S. Rappaport, “Wireless communications: principles and practice,” Prentice Hall, pp. 102-105, 2001.
[8] B. Li and H. Wang, “A Low Complexity Localization Algorithm in Wireless Sensor Network,” in International Conference on Innovative Computing and Communication and Asia-Pacific Conference on Information Technology and Ocean Engineering, pp. 217-220, 2010.
[9] A. Kathirvel and R. Srinivasan, “Analysis of Propagation Model using Mobile Ad Hoc Network Routing Protocols,” International Journal of Research and Reviews in Computer Science, Vol. 1, No. 1, pp. 9-10, 2010.
[10] J. Tang and P. Fan, “A RSSI-based cooperative anomaly detection scheme for wireless sensor networks,” in International Conference on Wireless Communications, Networking and Mobile Computing, pp. 2783-2786, 2007.
[11] D. Lymberopoulos, Q. Lindsey and A. Savvides, “An empirical characterization of radio signal strength variability in 3-d ieee 802.15. 4 networks using monopole antennas,” Wireless Sensor Networks, pp. 326-341, 2006.
[12] H. Koyuncu and S.H. Yang, “A Survey of Indoor Positioning and Object Locating Systems,” IJCSNS International Journal of Computer Science and Network Security, vol. 10, pp. 121-122, 2010.
[13] M. Hazas and A. Hopper, “A Novel Broadband ultrasonic location system for improved indoor positioning,” IEEE Transactions on mobile Computing, vol. 5, pp. 536-537, 2006.
[14] D. H. Liu H., Banerjee P. and Liu J., “Survey of wireless indoor positioning techniques and systems,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 37, pp. 1067-1080, 2007.
[15] J. Yin, Q. Yang and L. Ni, “Learning adaptive temporal radio maps for signal-strength-based location estimation,” IEEE Transactions on mobile Computing, pp. 869-870, 2008.
[16] Y.S. Chiou, C.L. Wang and S.C. Yeh, “An adaptive location estimator using tracking algorithms for indoor WLANs,” Wireless Networks, vol. 16, pp. 1987-1989, 2010.
[17] K. Whitehouse, et al., "A practical evaluation of radio signal strength for ranging-based localization," ACM SIGMOBILE Mobile Computing and Communications Review, vol. 11, pp. 41-52, 2007.
[18] T. King, S. kopf, T. Haenselmann, C. Lubberger and W. Effelsberg,“Compass: A probabilistic indoor positioning system based on 802.11 and digital compasses,” in Proceeding of the ACM International Workshop on Wireless Network Testbeds, Experimental evaluation and CHaracterization (WiNTECH), pp. 34-40, 2006.
[19] A. Papapostolou and H. Chaouchi, “Wife: Wireless indoor positioning based on fingerprint evaluation,” NETWORKING 2009, pp. 234-247, 2009.
[20] S.C. Yeh and C.C. Chiu, “A Study of Indoor Locating and Tracking Systems Based on Wireless Local Networks with RFID Technique,” Journal of Technology, vol. 25, pp. 307-314, 2010.
[21] T. Sanpechuda and L. Kovavisaruch, “A review of RFID localization: Applications and techniques,” in Proceedings of ECTI-CON, pp. 769-772, 2008.
[22] S. Park and S. Hashimoto, “Autonomous mobile robot navigation using passive RFID in indoor environment,” IEEE Transactions on Industrial Electronics, vol. 56, pp. 2366-2373, 2009.
[23] H.J. Lee and M.C. Lee, “Localization of mobile robot based on radio frequency identification devices,” in SICE-ICASE International Joint Conference, pp. 5934-5939, 2006.
[24] S. Han, H.S. Lim and J.M. Lee, “An efficient localization scheme for a differential-driving mobile robot based on RFID system,” IEEE Transactions on Industrial Electronics , vol. 54, pp. 3362-3369, 2007.
[25] K. Yamano, K. Tanaka, M. Hirayama, E. Kondo, Y. Kimuro and M. Matsumoto, “Self-localization of mobile robots with RFID system by using support vector machine,” in IEEE International Conference on intelligent robotics and system, 2004, pp. 3756-3761 vol. 4.
[26] J. Hightower, R. Want and G. Borriello, “SpotON: An indoor 3D location sensing technology based on RF signal strength,” UW CSE 00-02-02, University of Washington, Department of Computer Science and Engineering, Seattle, WA, pp.1-6, 2000.
[27] Y. Z. Mehrjerdi, “RFID: the big player in the libraries of the future,” The Electronic Library, vol. 29, pp. 36-51, 2011.
[28] N. Li and B. Becerik-Gerber, “Performance-based evaluation of RFID-based indoor location sensing solutions for the built environment,” Advanced Engineering Informatics, pp.5-7, 2011.
[29] G. Jin, X. Lu and M.S. Park, “An indoor localization mechanism using active RFID tag,” in IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, pp. 2-3, 2006.
[30] Z. Guo, Y. Guo, F. Hong, Z. Jin, Y. He, Y. Feng and Y. Liu, “Perpendicular intersection: Locating wireless sensors with mobile beacon,” IEEE Transactions on Vehicular Technology, vol. 59, pp. 3501-3509, 2010.
[31] J. Sim and N. Reid, “Statistical inference by confidence intervals: issues of interpretation and utilization,” Physical therapy, vol. 79, pp. 189-190, 1999.
指導教授 蘇坤良(Kuen-liang Sue) 審核日期 2011-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明