所別:<u>電機工程學系碩士班 固態組(一般生)</u> 科目:<u>電子學</u> 共 2 頁 第 1 頁 電機工程學系碩士班 電波組(一般生)

本科考試禁用計算器

*請在試卷答案卷(卡)內作答

1. 計算題 (8 分)

Find the output voltage, v_0 , of the circuit shown in Fig. 1. The input voltages of this circuit are $v_1 = 0.25 \text{ V}$ and $v_2 = 0.3 \text{ V}$.

2. 計算題 (12 分)

A common-source amplifier with an ideal bias current source, I, is shown in Fig. 2. If the current source I = 1.67 mA, and used NMOS transistor M has V_{GS} = 1.0 V, V_{DS} = 1.0 V, threshold voltage V_{tn} = 0.5 V, and λ = 0.01 V⁻¹,

2-1 (6 分) Find the output resistance r_o .

2-2 (6 分) Find the voltage gain A_v .

3. 計算與問答題 (10分)

Fig. 3 shows a typical three-stage ring oscillator with identical transistors.

3-1 (5 分) Find the required minimum voltage gain per stage for oscillation to start.

3-2 (5 分) Find the phase shift per stage.

4. 計算題(10分)

Fig. 4 shows a current amplifier implemented by an ideal operational amplifier. Find the expression for the output current I_0 .

5. 計算題(16分)

Fig. 5 shows the equivalent-circuit model of a common-source amplifier which is specified to have $C_{gs} = 2$ pF, $C_{gd} = 0.1$ pF, $C_L = 1$ pF, $g_m = 5$ mA/V, and $R_{sig} = R_L' = R_L // r_O = 20$ kΩ. 5-1 (2 分) Find the midband gain A_M .

5-2 (6 riangle) Find the high-frequency 3-dB frequency $extbf{f}_H$ using the method of Miller approximation. 5-3 (8 riangle) Find the high-frequency 3-dB frequency $extbf{f}_H$ using the method of open-circuit time constants.

6. 計算題 (16 分)

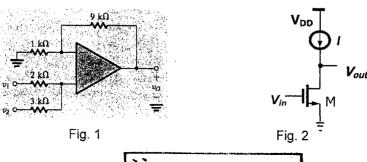
Fig. 6 shows a differential amplifier which is operated with I = 0.1 mA, and the used transistors have $V_A = 160$ V and $\beta = 100$.

6-1 (6 分) Find the differential input resistance.

6-2 (6 分) Find the open-circuit voltage gain.

6-3 (4 $\,$ $\!$ $\!$ $\!$) What will the approximate voltage gain be if the input resistance of the subsequent stage is 1.6 M Ω .

7. 計算題 (20 分)


Fig. 7 shows a series-shunt feedback amplifier. The transistors are biased with the ideal current sources $I_{B1} = 0.1$ mA, and $I_{B2} = 1$ mA. The devices operate with $V_{BE} = 0.7$ V and have $\beta_1 = \beta_2 = 100$ and infinite Early voltage. $R_s = 100 \Omega$, $R_1 = 1 k\Omega$, $R_2 = 10 k\Omega$, and $R_L = 1 k\Omega$.

7-1(5 分) If the loop gain is high enough, what do you expect the closed-loop gain V_o/V_s to be? 7-2 (5 分) Find the input impedance R_{in} .

7-3 (10 分) Find the exact closed-loop gain V_o/V_s .

8. 計算與問答題 (8分)

Fig. 8 shows a 5-bit charge-redistribution A/D converter in sample phase. If $V_{REF} = 4 \text{ V}$ and $v_A = 1.5 \text{ V}$, which switches will be connected to V_{REF} at the end of conversion?

注:背面有試題

國立中央大學101學年度碩士班考試入學試題卷 2 頁 第 2 頁 所別:電機工程學系碩士班 固態組(一般生) 科目: 電子學 電機工程學系碩士班 電波組(一般生) 本科考試禁用計算器 *請在試卷答案卷(卡)內作答 ₹R, *R₂* ₩ Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Comparator Fig. 8

注:背面有試題