博碩士論文 93344012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.216.94.152
姓名 蕭弘毅(Hung-yi Hsiao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 溶液噴紡及氣流靜電紡絲超極細纖維及其應用
(The preparation and application of ultrafine fibers by solution blown and air blowing electrospinning technique)
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜★ 利用次微米球建構具機械性質之光子晶體薄膜
★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體
★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究★ 含水溶性藥物之乙基纖維素微膠囊的製備
★ 銅箔基板環氧樹脂含浸液之研究★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備
★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子
★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體★ 溶膠-凝膠法製備相轉移材料微膠囊
★ 親疏水性光阻製備★ 奈米多孔性材料之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要利用溶液噴紡法及氣流靜電紡絲法來分別製備聚丙烯腈(PAN) 超極細纖維及聚碳酸酯(PC)奈米纖維,並提出其在液體吸附及空氣過濾的應用研究。首先第一主題為以溶液噴紡法製備PAN超極細纖維,探討熱穩定化溫度在KOH化學活化製程對製備PAN高比表面積活性碳的影響,並研究其對燃燒排放廢氣中二氧化碳(CO2)的吸附性能。第二主題為以溶液噴紡法製備PAN超極細纖維,探討氫氧化鉀(KOH)化學活化劑用量及碳化溫度對製備PAN高比表面積活性碳的影響,並研究其在液體中對壬基酚(NP)的吸附性能。第三主題為以氣流靜電紡絲法製備PC奈米纖維,研究以氣流壓力、溶液進料速率和PC溶液濃度等參數來製備PC奈米纖維棉網,探討PC溶液性質、PC溶液濃度及氣流壓力對纖維形態的影響,氣流壓力對纖維直徑及形成球珠(bead)纖維的影響, PC奈米纖維直徑對奈米纖維複合棉網的Frazier透氣度及平均孔徑大小的影響,並研究PC奈米纖維複合棉網的平均孔徑大小對空氣過濾性能的影響。在成果上,本論文成功利用溶液噴紡法及KOH化學活化法的製備出具有高比表面積的PAN活性碳及以氣流靜電紡絲法製備高空氣過濾性能的PC奈米纖維。結果顯示,溶液噴紡PAN超極細纖維以280 oC熱穩定化、KOH與PAN重量比例為3及碳化溫度900 oC處理,得到PAN活性碳的比表面積為2834 m2/g,對液體中壬基酚的吸附容量為287 mg/g。溶液噴紡PAN超極細纖維以260 oC熱穩定化及KOH與PAN重量比例為3及碳化溫度900 oC處理,得到PAN活性碳的比表面積為3081 m2/g,對N2/CO2(85/15 % v/v)混合氣流的重量平衡CO2吸附容量為5.53 mmol/g。以220 oC熱穩定化及KOH與PAN重量比例為3及碳化溫度900 oC處理,得到PAN活性碳的比表面積為2366 m2/g,對含水氣之N2/CO2/H2O(83/10/7 % v/v)混合氣流的動態平衡CO2吸附容量為2.7 mmol/g。再者,具有高空氣過濾性能的PC奈米纖維,是以40 kV電壓, 0.3 MPa氣流壓力, 16 % PC高分子濃度及收集板間距為25 cm的氣流輔助靜電紡絲製程條件,得到均勻的PC奈米纖維、窄的纖維直徑分布、小的複合棉網的平均氣流孔徑大小及纖維直徑大約為170 nm,能有效增進空氣的過濾性能。
摘要(英) In this dissertation, simple and effective solution-blowing and air blowing-assisted electrospinning techniques are presented, by which ultra-thin polyacrylonitrile (PAN) fibers and polycarbonate (PC) nanofibers are prepared and their applications for adsorption of liquid and air filtration are thoroughly examined. In the first part, a solution-blowing process is used to prepare ultra-thin PAN fibers and then the effects of the amount of KOH and carbonized temperature on the preparation of the high-surface-area PAN-based activated carbons are investigated. The high-surface-area PAN-based activated carbons are used to explore the adsorption performances of carbon dioxide (CO2) of post-combustion process. In the second part, a solution-blowing process is used to prepare ultra-thin PAN fibers and then the effects of stabilization temperature on the preparation of the high-surface-area PAN-based activated carbons are investigated. The high-surface-area PAN-based activated carbons are used to explore the adsorption performances of aqueous nonylphenol (NP). In the third part, an air blowing-assisted electrospinning process is used to prepare PC nanofibers and then the effects of air blowing pressure, applied voltage, polymer feeding flow rate and PC solution concentration on the physical properties of fibers and the filtration performance of the nanofiber web are investigated. The investigations include the effects of PC solution concentration and air blowing pressure on morphology such as the fiber diameter and bead density, the effect of fiber diameter on the mean flow pore size and Frazier air permeability of nanofiber mat, and the effect of mean flow pore size on filtration efficiency of nanofiber mat/PP non-woven web. Based on the experimental results, the high-surface-area PAN-based activated carbons and PC nanofiber mats with high filtration efficiency are sucessfully obtained using the solution-blowing process and the air blowing-assisted electrospinning process, respectively. The surface area of the PAN-based activated carbon can be over 2500 m2 g-1 and the adsorption amounts of NP can reach as high as 287 mg g-1, respectively. The ultra-thin PAN fibers stabilized at 533 K achieved the highest CO2 gravimetric equilibrium capacity of 5.53 mmol g-1 in a binary mixture of 15% CO2 in N2 at 323 K, while AC493 had the highest CO2 dynamic adsorption of 2.70 mmol g-1 in a N2/CO2/H2O mixture (83/10/7 % v/v) at 323 K. High filtration performance PC nanofibers, with an average fiber diameter of about 170 nm, can be obtained using an applied voltage of 40 kV, an air blowing pressure of 0.3 MPa, a PC solution concentration of 16%, and a tip-to-collection-screen distance of 25 cm.
關鍵字(中) ★ 溶液噴紡
★ 氣流靜電紡絲
★ 超極細纖維
關鍵字(英) ★ ultrafine fiber
★ solution blown
★ air blowing electrospinning
論文目次 目 錄
中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xv
第一章 緒論 1
第二章 文獻回顧 6
2.1 溶液噴紡不織布技術 6
2.2 奈米纖維的靜電紡絲技術 10
2.3 氣流靜電紡絲奈米纖維 14
2.4 奈米纖維在過濾材的應用 17
2.5 活性碳吸附二氧化碳的應用 23
第三章、熱穩定化溫度對KOH活化超極細PAN活性碳纖維的影響及其在
二氧化碳吸附的應用 38
3.1 前言 38
3.2 實驗材料及研究方法 39
3.3 結果與討論 44
3.4 結論 70
第四章 KOH活化溶液噴紡超極細PAN活性碳纖維及其在液體
吸附的應用 71
4.1 前言 71
4.2 實驗材料及設備 72
4.3 研究內容及實驗方法 73
4.4 結果與討論 75
4.5 結論 91
第五章、氣流靜電紡絲PC奈米纖維及其在過濾性能之研究 92
5.1 前言 92
5.2 實驗材料及研究方法 94
5.3 結果與討論 98
5.4 結論 114
第六章 總結 115
參考文獻 117
參考文獻 [1] Gibson, P.; Gibson, H. S.; Rivin, D. Colloid Surf A-Physicochem Eng Asp 2001, 187-188, 469
[2] Ellison, C. J.; Phatak, A.; Giles, D. W.; Macosko, C. W.; Bates, F. S. Polymer 2007, 48, 3306
[3] Medeiros, E. S.; Glenn, G. M.; Klamczynski, A. P.; Orts, W. J.; Mattoso, L. H. C. J Appl Polym Sci 2009, 113, 2322
[4] Zhang, L. ; Kopperstad, P.; West, M.; Hedin, N.; Fong, H. J Appl Polym Sci 2009, 114, 3479
[5] Sinha-Ray, S.; Yarin, A.L.; Pourdeyhimi, B. Carbon 2010, 48, 3575
[6] Sinha-Ray, S.; Zhang, Y. ; Yarin, A. L. ; Davis, S. C. ; Pourdeyhimi, B. Biomaterials 2011, 12, 2357
[7] Koski, A.; Yim, K.; Shivkumar, S. Mater Lett, 2004, 58, 493
[8] Frenot, A.; Chronakis, I. Curr Opin Colloid Interface Sci, 2003, 8, 64
[9] Formhals, A. US Patent 1,975,504 (1934)
[10] Davis, R. S. Structure Formation in Polymeric Fibers, chapter 6, 2001
[11] Rutledge, G. C. Available at:
http://heavenly.mit.edu/~rutledge/PDFs/NTCannual00.pdf, Accessed June 2010
[12] Lin, Y.; Yao, Y.; Yang X. ; Wei, N. ; Li, X.; Gong, P.; Li, R.; Wu, D. J Appl Polym Sci 2008, 107, 909
[13] Kim, A. H.; Yoon, H. Appl Phys A 2008, 90, 389
[14] Lin, Y.; Yao, Y. Y.; Yang, X. Z. ; Shen, L. M. ; Li, R. X. ; Wu, D. C. Chinese J
Polym Sci 2009, 27, 511
[15] Lin, Y.; Chi, L.; Yao, Y. Y. ; Wu, D. C. Iran Polym J 2008, 17, 373
[16] Guan, D.; Chen, Z.; Huang, C. P.; Lin, Y. Appl Surf Sci 2008, 255, 324
[17] 蕭弘毅、羅庚生、林嘉君、龔丹誠、鄭淑蕙,"奈米纖維濾材的過濾性質",中華民國紡織工程學會第五十四屆年會會訊54, 158, 2006
[18] Barhate, R. S.; Ramakrishna, S. J Membr Sci 2007, 296, 1
[19] Grafe, T. H.; Graham, K. M. Available at: http://www.donaldson.com/en/filtermedia/support/datalibrary/052026.pdf
Accessed June 2010
[20] Zhang, Q.; Welch, J.; Park, H.; Wu, C. Y.; Sigmund, W.; Marijnissen, J. C. M. J Aerosol Sci 2010, 41, 230
[21] Ahna, Y. C.; Park, S. K.; Kim, G. T.; Hwang, Y. J.; Lee, C. G.; Shin, H. S.; Lee, J. K. Curr Appl Phys 2006, 6, 1030
[22] Wang J.; Kim, S. C.; Pui, D. Y. H. J Aerosol Sci 2008, 39, 323
[23] Subbiah, T.; Bhat, G. S.; Tock, R. W.; Parameswaran, S.; Ramkumar, S. S. J Appl Polym Sci 2005, 96, 557
[24] Graham, K.; Ouyang, M.; Raether, T.; Grafe, T.; McDonald, B.; Knauf, P. Polymeric nanofibers in air filtration applications. In American filtration &
separation society annual conference. Galveston, Texas, April 2002
[25] Podgorski, A.; Bałazy, A.; Grado’n, L. Chem Eng Sci 2006, 61, 6804
[26] Qin, X. H.; Wang, S. Y. J Appl Polym Sci 2006, 102, 1285
[27] 彭柏洋, "中孔洞二氧化碳吸附材之開發", 崑山科技大學綠色材料研究所
碩士論文, 99年5月
[28] Figueroa, J. D.; Plasynski, S.; McIlvried, H.; Srivastava, R. D. Int J Green Gas
Con 2008, 2, 9
[29] Ruthven, D. M. Principles of adsorption and adsorption process. John Wiley and
Sons Ltd., Chichester, 29(1984) 433.
[30] Gregg, G.S.; Sing, K.S.W.; Adsorption, Surface Area and Porosity, Harcourt Brace Jovanovich, London, 4 (1982) 287.
[31] Suzuki, M. Adsorption Engineering, Kodansha Ltd., Tokyo. 1990.
[32] Rodríguez-Reinoso, F.; Molina-Sabio, M.; Gonzalez, M. T. Carbon 1995, 33, 15
[33] Wigmans, T. Carbon 1989, 27, 13
[34] Caturla, F.; Molina-Sabio, M.; Rodríguez-Reinoso, F. Carbon 1991, 29, 999
[35] Ahmadpour, A.; Do, D. D. Carbon 1996, 34, 471
[36] Teng, H.; Yeh, T. S. Ind Eng Chem Res 1998, 37, 58
[37] Teng, H.; Yeh, T. S.; Hsu, L. Y. Carbon 1998, 36, 1387
[38] Jagtoyen, M.; Thwaites, M.; Stencel, J. ; McEnaney, B. ; Derbyshire, F. Carbon 1992, 30, 1089
[39] Laine, J.; Yunes, S. Carbon 1992, 30, 601
[40] Ehrburger, P.; Addoun, A.; Addoun, F.; Donnet, J. B. Fuel 1986, 65, 1447
[41] Yamashita, T.; Ouchi, K. Carbon 1982, 20, 41
[42] 徐禮業, "以化學活化法由煤製備高孔隙碳材料", 國立成功大學化學工程學系
碩士論文, 1999.
[43] Hu, Z.; Srinivasan, M. P. Microporous Mesoporous Mater 1999, 27, 11
[44] Wu, F. C. ; Tseng, R. L. J Hazard Mater 2008, 152, 1256
[45] Song, X.; Wang, C.; Zhang, D. Appl Surf Sci 2009, 255, 4159
[46] Król, M.; Gryglewicz, G.; Machnikowski, J. Fuel Process Technol 2011, 92, 158
[47] Chena, Y.; Zhoua, L. J.; Honga, Y. Z.; Caob, F.; Lia, L.; Lia, J. B. Carbon 2010, 48,
3005
[48] Boehm, H. P. Carbon 1994, 32 , 759
[49] Meng, L. Y.; Park, S. J. J Colloid Interface Sci 2010, 352, 498
[50] Przepiórski, J.; Skrodzewicz, M.; Morawski, A.W. Appl Surf Sci 2004, 225, 235
[51] Lu, C.; Bai, H.; Wu, B.; Su, F. ; Hwang, J. F. Energy Fuels 2008, 22, 3050
[52] Maroto-Valer, M. M.; Tang, Z.; Zhang, Y. Fuel Process Technol 2005, 86, 1487
[53] Sanpasertparnich, T.; Idem, R.; Bolea, I.; deMontigny, D.; Tontiwachwuthikul, P. Int. J Green Gas Con 2010, 4, 499
[54] GHG, I. Post Combustion Carbon Capture from Coal Fired Plants-Solvent
Scrubbing, Technical Study Report 2007-15
[55] Rao, A. B.; Rubin, E. S. Environ Sci Technol 2002, 36, 4467
[56] Thiruvenkatachari, R.; Su, S.; An, H.; Yu, X. X. Prog Energ Combus 2009, 35, 438
[57] Huang, H.Y.; Yang, R. T.; Chinn, D.; Munson, C. L. Ind Eng Chem Res 2003, 42, 2427
[58] Chang, A. C. C.; Chuang, S. S. C.; Gray, M.; Soong, Y. Energ Fuel 2003, 17, 468
[59] Hiyoshi, N.; Yogo, K.; Yashima, T. Micropor Mesopor Mater 2005, 84, 357
[60] Hicks, J. C.; Drese, J. H.; Fauth, D. J.; Gray, M. L.; Qi, G.. G..; Jones, C. W. J Am Chem Soc 2008, 130, 2902
[61] Gray, M. L.; Champagne, K. J.; Fauth, D.; Baltrus, J. P.; Pennline, H. Int. J Green Gas Con 2008, 2, 3
[62] Pevida, C.; Drage, T. C.; Snape, C. E. Carbon 2008, 46, 1464
[63] Plaza, M. G..; Rubiera, F.; Pis, J. J.; Pevida, C. Appl Surf Sci 2010, 256, 6843
[64] Sjostrom, S.; Krutka, H. Fuel 2010, 89, 1298
[65] Wang, Q.; Liang, X.; Qiao, W.; Liu, C.; Liu, X.; Zhan, L; Ling, L. Fuel Process Technol 2009, 90, 381
[66] Hendawy, A. A.; Hendawy, E. Appl Surf Sci 2009, 255, 3723
[67] Fitzer, E.; Frohs, W.; Heine, M. Carbon 1986, 24, 387
[68] Nataraj, S. K.; Yang, K. S.; Aminabhavi, T. M. Prog Polym Sci 2012, 37, 487
[69] Li, W.; Zhang, L.; Peng, J.; Li, N.; Zhu, X. Ind Crops Prod 2008, 27, 341
[70] Lillo-Ródenas, M. A.; Cazorla-Amorós, D.; Linares-Solano, A. Carbon 2003, 41, 267
[71] McKee, D. W. Carbon 1982, 20, 59
[72] Guo, J.; Lua, A. C. J Colloid Interf Sci 2002, 254, 227
[73] Laszlo, K.; Tombacz, E.; Josepovits, K. Carbon 2001, 39, 1217
[74] Lahaye, J.; Nanse, G..; Bagreev, A.; Strelko, V. Carbon 1999, 37, 585
[75] Pels, J. R.; Kapteijn, F.; Moulijn, J. A.; Zhu, Q.; Thomas, K. M. Carbon 1995, 33, 1641
[76] Wu, F. C.; Tseng, R. L.; Hu, C. C. Micropor Mesopor Mater 2005, 80, 95
[77] Tseng, R. L.; Tseng, S. K. J Hazard Mater 2006, B136, 671
[78] Bhagiyalakshmi, M.; Yun, L. J.; Anuradha, R.; Jang, H. T. J Hazard Mater 2010, 175, 928
[79] Plaza, M. G.; Pevida, C.; Martin, C. F.; Fermoso, J.; Pis, J. J.; Rubiera, F. Sep
Purif Technol 2010, 71, 102
[80] Thote, J. A.; Iyer, K. S.; Chatti, R.; Labhsetwar, N. K.; Biniwale, R. B.; Rayalu, S. S. Carbon 2010 , 48, 396
[81] Plaza, M. G..; Garcia, S.; Rubiera, F.; Pis, J. J.; Pevida, C. Chem Eng J 2010, 163, 41
[82] Dantas, T.L.P.; Luna, F.M. T.; Jr, I. J.S.; de Azeved, D.C.S.; Grande, C. A.; Rodrigues, A. E.; Moreira, R.F.P.M. Chem Eng J 2011, 169 , 11
[83] Hsiao, H. Y.; Huang, C. M.; Hsu, M. Y.; Chen, H. Sep Purif Technol 2011, 82, 19
[84] 柯澤豪, 蘇彥儒, 劉典倡, 吳宗豪, 吳俊潁.“聚丙烯腈纖維活碳化製程評估”,中華民國材料年會,台南(2003).
[85] Yoon, S. H.; Lim, S. Carbon 2004, 42, 1723
[86] Park, S. J.; Jung, W. Y. J Colloid Interface Sci 2002, 250, 93
[87] Babel, K.; Jurewicz, K. J Phys Chem Solids 2004, 65, 275
[88] Kadlec, O.; Varhaníková A.; Zukal, A. Carbon 1970, 8, 321
[89] Keun, J.; Choi, A.; Kim, S. G.. Chemosphere 2005, 58, 1535
[90] Gullona, M.; Andrews, R.; Jagtoyen M.; Derbyshire, F. Fuel 2001, 80, 969
[91] 蕭弘毅、張舫嫕、羅立清、鄭淑蕙、陳中屏,"以KOH化學活化PAN溶噴不織布製備多孔性碳材",紡織綜合研究期刊 19(3), 6-12, 2009
[92] Huang, Z. M.; Zhang, Z. Y.; Kotaki, M.; Ramakrishna, S. Compos Sci Technol 2003, 63, 2223.
[93] Hegde, R. R.; Dahiya, A.; Kamath, M. G. Available
at: http://web.utk.edu/~mse/pages/Textiles/Nanofiber%20Nonwovens.htm. Accessed June 2010.
[94] Moon, K. S.; Kim, H. J.; Lee, E.; Lee, M. Angew Chem Int Ed 2007, 46, 6807.
[95] Feng, L.; Li, S.; Li, H.; Zhai, J.; Song, Y.; Jiang, L.; Zhu, D. Angew Chem Int Ed
2002, 41, 1221.
[96] Reneker, D. H.; Chun, I. Nanotechnology 1996, 7, 216
[97] Lu, C.; Chen, P.; Li, J.; Zhang, Y. Polymer 2006, 47, 915.
[98] Kim, S. J.; Nam, Y. S.; Rhee, D. M.; Park, H. S.; Park, W. H. Eur Polym J 2007,
43, 3146.
[99] Marks, M. J.; Sekinger, J. K. Polymer 1995, 36, 209.
[100] Yang, D.; Wang, Y.; Zhang, D.; Liu, Y.; Jiang, X. Chinese Sci Bull 2009, 54, 2911.
[101] Shawon, J.; Sung, C. J Mater Sci 2004, 39, 4605.
[102] Krishnappa, R. V. N.; Desai, K.; Sung, C. J Mater Sci 2003, 38, 2357.
[103] Moon, S.; Farris, R. J. Polym Eng Sci 2008, 48, 1848.
[104] Welle, A.; Kröger, M.; Döring, M.; Niederer, K; Pindel, E.; Chronakis, I. S.
Biomaterials 2007, 28, 2211.
[105] Higgins, B. A.; Britain, W. J. Eur Polymer J 2005, 41, 889.
[106] Dotti, F.; Varesano, A.; Montarsolo, A.; Aluigi, A.; Tonin, C.; Mazzuchetti, G. J Ind Text 2007, 37, 151.
[107] Yarin, A. L.; Koombhongse, S.; Reneker, D. H. J Appl Phys 2001, 90, 4836.
[108] Pana, H.; Li, L.; Hua, L.; Cuia, X. Polymer 2006, 47, 4901.
[109] Feng, J. J. J Non-Newton Fluid Mech 2003, 116, 55.
[110] Feng, J. J. Phys Fluids 2002, 14, 3912.
[111] Hohman, M. M.; Shin, M.; Rutledge, G.; Brenner, M. P. Phys Fluids 2001, 13, 2201.
[112] Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S. J Appl Phys 2000, 87, 4531.
[113] Carroll, C. P.; Joo, Y. L. J Non-Newton Fluid Mech 2008, 153, 130.
[114] Han, T.; Yarin, A. L.; Reneker, D. H. Polymer 2008, 49, 1651.
[115] Yu, J. H.; Fridrikh, S. V.; Rutledge, G. C. Polymer 2006, 47, 4789.
[116] Kong, C. S.; Yoo, W. S.; Lee, K. Y.; Kim, H. S. J Mater Sci 2009, 44, 1107.
[117] Theron, S. A.; Yarin, A. L.; Zussman, E.; Kroll, E. Polymer 2005, 46, 2889.
[118] Ding, B.; Kimura, E.; Sato, T.; Fujita, S.; Shiratori, S. Polymer 2004, 45, 1895.
[119] Dosunmu, O. O.; Chase, G. G.; Kataphinan, W.; Reneker, D. H. Nanotechnology 2006, 17, 1123.
[120] Wang, X.; Um, I. C.; Fang, D.; Okamoto, A.; Hsiao, B. S.; Chu, B. Polymer 2005, 46, 4853.
[121] Um, I. C.; Fang, D.; Hsiao, B. S.; Okamoto, A.; Chu, B. Biomacromolecules 2004, 5, 1428.
[122] Peng, M.; Sun, Q.; Ma, Q.; Li, P. Micropor Mesopor Mater 2008, 115, 562.
[123] Lin, Y.; Yao, Y.; Yang, X. Wei, N.; Li, X.; Gong, P.; Li, R.; Wu, D. J Appl Polym
Sci 2008, 107, 909.
[124] Wang, B.; Yao, Y.; Peng, J.; Lin, Y.; Liu, W.; Luo, Y.; Xiang, R.; Li, R.; Wu, D. J
Appl Polym Sci 2009, 114, 883.
[125] Image, J. Available at: http://rsb.info.nih.gov/ij/. Accessed June 2010.
[126] Kattamuri, N.; Sung, C. Nanotech 2004. Available
at: http://www.nsti.org/publications/Nanotech/2004/pdf/B3-112.pdf. Accessed June 2010.
[127] Megelski, S.; Stephens, J. S.; Chase, D. B.; Rabolt, J. F. Macromolecules 2002, 35, 8456.
[128] Shenoy, S. L.; Bates, W. D.; Frisch, H. L.; Wnek, G. E. Polymer 2005, 46, 3372.
[129] Fong, H.; Chun, I.; Reneker; D. H. Polymer 1999, 40, 4585.
[130] Gupta, P.; Elkins, C.; Long, T. E.; Wilkes, G. L. Polymer 2005, 46, 4799.
[131] Hsiao, H. Y.; Huang, C. M.; Liu, Y. Y.; Kuo, Y. C.; Chen, H. J Appl Polym Sci 2012, 124, 4904
指導教授 陳暉(Hui Chen) 審核日期 2012-4-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明