博碩士論文 983211001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:3.145.57.5
姓名 劉威宏(Wei-Hung Liu)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 流體剪應力結合1-甲基-3-異丁基黃嘌呤對於人類胎盤幹細胞分化之影響
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 目前已有許多研究證實給予幹細胞特定的化學生長因子能誘導幹細胞朝向特定分化之路徑前進,而給予幹細胞不同的物理刺激模式也確實會影響幹細胞基因的表現、蛋白質的分泌及細胞的生長、遷移、增殖、分化等細胞行為。本文主旨為設計製作可對細胞施加流體剪應力刺激之生物反應器。其作動原理為利用馬達轉動並帶動圓錐與平板培養室間之培養液旋轉,而旋轉的培養液會對平板培養室上之細胞進行剪應力刺激,並藉由扭力量測裝置的設計能即時定量監控作用於平板上之剪應力大小與誤差。
經過細胞相容性測試後,本研究以此圓錐平板型生物反應器進行流體剪應力對幹細胞分化影響之研究。嘗試利用1-甲基-3-異丁基黃嘌呤 (1-methyl-3-isobutylxanthine, IBMX) 誘導人類胎盤幹細胞 (Placenta Derived Multipotent Cells, PDMCs) 分化為神經細胞,並於投藥過程中利用自製生物反應器施予1、4、8 dyn/cm2三種不同強度之流場剪應力刺激10分鐘,觀察刺激後2小時與72小時對PDMCs分化之影響。實驗結果顯示IBMX若配合較大之流體剪應力進行PDMCs誘導分化,能增進PDMCs分化為神經細胞之趨勢。
摘要(英) Many research results have demonstrated that stem cells can differentiate into specialized cells by chemical induction. Physical stimuli have also been confirmed to be able to trigger specific gene expressions, induce secretion of proteins and modulate cell behaviors such as growth, migration, proliferation and differentiation.
In this study we designed a cone-plate bioreactor which can produce quantified fluid shear stress. By rotating the cone, the bioreactor drives the culture medium to flow in a circular way, which generates virtually uniform azimuthal shear stress that can be applied to the cultured cells on the plate. In order to perform a real time monitoring over the magnitudes of shear stress, a torque sensor was installed to measure the torque caused by the shear stress on the plate.
After biocompatibility tests, the Placenta Derived Multipotent Cells (PDMCs) were cultured in the bioreactor. The PDMCs were then induced toward neuronal differentiation by applying both the chemical and physical stimulation simultaneously. We applied 1-methyl-3-isobutylxanthine (IBMX) as the chemical agent and investigated the effectiveness of the shear stress on cell differentiation. The application of shear stress along without IBMX addition showed no cell differentiation. However, the PDMCs differentiation initiated by the IBMX were enhanced by simultaneously applying the stress.
關鍵字(中) ★ 細胞分化
★ 剪應力
★ 圓錐平板型生物反應器
★ 胎盤幹細胞
關鍵字(英) ★ PDMCs
★ cell differentiation
★ shear stress
★ cone-plate bioreactor
論文目次 中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1前言 1
1.2文獻回顧 4
1.2.1人類胎盤幹細胞 4
1.2.2剪應力生物反應器 5
1.2.3化學刺激與物理刺激對於幹細胞之影響 6
1.3研究動機 8
1.4論文架購 9
第二章 生物反應器設計與製作 10
2.1 設計前言 10
2.2 剪應力產生原理以及剪應力計算 10
2.2.1剪應力產生原理 11
2.2.2定常轉速剪應力計算 12
2.3 培養室設計 13
2.3.1培養液性質量測 13
2.3.2圓錐與平板培養室之設計 14
2.3.3系統剪應力表現 16
2.4生物反應器機構設計 17
2.4.1培養環境系統 18
2.4.2馬達驅動裝置與馬達密封組件 19
2.4.3馬達承載箱體空間 24
2.4.4扭力量測裝置校正 28
2.4.5圓錐與平板培養室間距定位調整 30
第三章 實驗方法 33
3.1 細胞來源 33
3.1.1細胞培養 33
3.2玻片滅菌消毒程序 34
3.3實驗前置準備 35
3.4細胞種植 36
3.5生物反應器細胞相容性測試 38
3.6實驗步驟 39
3.6.1人類胎盤幹細胞之種植 39
3.6.2種植細胞計數與型態觀察 41
3.6.3實驗組移入平板培養室 41
3.6.4生物反應器操作步驟 41
3.7實驗條件 42
3.7.1馬達轉速設定 43
3.7.2神經誘導化學藥物濃度配置 44
3.8結果分析 45
3.8.1細胞型態觀察 45
3.8.2免疫螢光染色法 45
3.8.3細胞影像處理與分析 47
第四章 實驗結果與討論 48
4.1實驗前言 48
4.2細胞相容性 49
4.3結合IBMX與流體剪應力之分化結果 52
4.3.1負向控制 52
4.3.2正向控制 54
4.3.3單純流場剪應力刺激 56
4.3.4流場剪應力刺激結合IBMX 60
4.4細胞數量與分化率 64
4.4.1細胞數量 64
4.4.2細胞分化率 66
4.5分化結果討論 69
第五章 結論與未來展望 71
參考文獻 73
附錄-實驗藥品與儀器 78
參考文獻 Bao, X., Clark, C.B., and Frangos, J.A., 2000. Temporal gradient in shear-induced signaling pathway: involvement of MAP kinase, c-fos, and connexin 43. Am. J Physiol. Heart Circulat. Physiol. 278, p.1598-1605.
Barinaga, M., 2000. Fetal neuron grafts pave the way for stem cell therapies. Science 287, p.1421-1422.
Blackman, B.R., Barbee, K.A., a nd Thibault, L.E., 2000. In vitro cell shearing device to investigate the dynamic response of cells in a controlled hydrodynamic environment. Biomedical Engineering Society 28, p.363-372.
Blackman, B.R, García Cardeña, G., and Gimbrone, M.A., 2002. A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms. Journal of Biomechanical Engineering 124, p.397-407.
Breen, L.T., McHugh, P.E., McCormack, B.A., Muir, G., Quinlan, N.J., Heraty, K.B., and Murphy, B.P., 2006. Development of a novel bioreactor to apply shear stress and tensile strain simultaneously to cell monolayers. Review of Scientific Instruments 77, p.104301-104309.
Brignier, A.C. and A.M. Gewirtz, 2010. Embryonic and adult stem cell therapy. Journal of Allergy and Clinical Immunology 125(2), p.336-344.
Brown, T.D., 2000. Techniques for mechanical stimulation of cells in vitro: A review. Journal of Biomechanics 33, p.3-14.
Bussolari, S.R., Dewey, C.F., and Gimbrone, M.A., 1981. Apparatus for subjecting living cells to fluid shear stress. Review of Scientific Instruments 53, p.1851-1854.
Chang S. F., Chang C.A., Lee D.Y., Lee P.L., Yeh Y.M., Yeh C.R., Cheng C.K., Chien S., Chiu J.J, 2008. Tumor Cell Cycle Arrest Induced by Shear Stress: Roles of Integrins and Smad. PNAS 105, p.3927-3932.
Chung, C.A., Tzou, M.R. and Ho, R.W., 2005. Oscillatory flow in a Cone and plate bioreactor. Journal of Biomechanical Engineering 127, p.601-610.
Chung, C.A., Weng, C.S. and Tu, M.Z., 2006. The periodical Shear environment of a cone-and-plate bioreactor. Journal of Fluids Engineering128, p.388-397.
Dawe, G.S., X.W. Tan, and Z.C. Xiao., 2007. Cell migration from baby to mother. Cell Adh Migr1(1), p.19-27.
Dewey, C.F., Bussolari, S.R., Gimbrone, M.A. and Davies, P.F., 1981. The dynamic response of vascular endothelial cells to fluid shear stress. Journal of Biomechanical Engineering 103, p.177-185.
Dong, J.D., Gu, Y.Q., Li, C.M., Wang, C.R., Feng, Z.G., Qiq, R.X., Chen, B., Li, J.X., Zhang, S.W., Wang, Z.G., Zhang, J., 2009. Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts. Acta Pharmacologica Sinica, p.530-536.
Ebisawa K, Hata KI, Okada K, Kimata K, Ueda M, Torii S., 2004. Ultrasound enhances transforming growth factor beta-mediated chondrocyte differentiation of human mesenchymal stem cells. Tissue Engineering 10(5-6), p.921–929.
Feugier, P., Black, R.A., Hunt, J.A., How, T.V., 2004. Attachment, morphology and adherence of human endothelial cells to vascular prosthesis materials under the action of shear stress. Biomaterials 26, p.1457-1466.
Furukawa, K., Ushida, T., Sugano, H., Ohshima, N. and Tateishi, T., 1999. Real time observation of platelet adhesion to opaque biomaterial surfaces under shear flow conditions. J. Biomed. Mater. Res 46, p.93–102.
Hsu, S.H., Chen, C.A., 2003. In vitro evaluation of cell loss: retention and repopulation on substrates upon shear flow by a rheometer. Journal of Medical and Biological Engineering 23, p.171-176.
Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. 2007. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 447, p.879-880.
Langer, R. and Vacanti, J.P., 1993. Tissue Engineering. Science 26, p.920-926.
Lanza, Langer, Vacanti. 2007. Principles of Tissue Engineering 3rd Edition. Elsevier, N.Y., Chapter 1.
Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Mar. 2004. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103, p.1669-1675.
Li G, Zhang XA, Wang H, Wang X, Meng CL, Chan CY, Yew DT, Tsang KS, Li K, Tsai SN, Ngai SM, Han ZC, Lin MC, He ML, Kung HF. 2009. Comparative proteomic analysis of mesenchymal stem cells derived from human bone marrow, umbilical cord, and placenta: Implication in the migration. Proteomics 9(1), p.20-30.
Martin, I., Wendt, D., Heberer, M., 2004. The role of bioreactor in tissue engineering. TRENDS in Biotechnology 22, p.80-86.
McBride, S.H, Falls, T., and Knothe Tate, M.L., 2008. Modulation of stem cell shape and fate B: Mechanical modulation of stem cell shape and gene expression. Tissue Engineering 14, p.1573-1580.
Miyanishi K, Trindade MC, Lindsey DP, Beaupré GS, Carter DR, Goodman SB, Schurman DJ, Smith RL., 2006. Effects of hydrostatic pressure and transforming growth factor-beta 3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Engineering 12(6), p.1419-1428.
Mooney, M., Ewart, R.H., 1934. The conicylindrical viscometer. Physis 5, p.350-354.
O’Cearbhaill, E.D., Punchard, M.A., Murphy, M. Barry, F.P., McHugh, P.E. Barron, V., 2008. Response of mesenchymal stem cell to the biomechanical environment of the endothelium on a flexible tubular silicone substrate. Biomaterials 29, p.1610-1619.
Ohno M, Gibbons G.H, Dzau V.J, Cooke J.P. 1993. Shear stress elevates endothelial cGMP. Role of a potassium channel and G protein coupling. Circulation.88, p.193–197.
Pelech, I. Shapiro, A. H., 1967, Flexible disk rotating on a gas film next to a wall. Trans. ASME 31, p.577-584
Pörtner, R., Nagel-Heyer, S., Goepfert, C., Adamietz, P., and Meenen, N.M., 2005. Bioreactor design for tissue engineering. Journal of Bioscience and Bioengineering 100, p.235-245.
Rüster, B., Göttig, S., Ludwig, R.J., Bistrian, R., Müller, S., Seifried, E., Gille J. and Henschler, R., 2009. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. BLOOD 108, p.3938-3944.
Saxena, A.K., 2005. Tissue engineering: Resent concepts and strategies. Journal of Indian Association of Pediatric Surgeons 10, p.14-19.
Scaglione, S., Wendt, D., Miggino, S., Papadimitropoulos, A., Fato, M., Quarto, R., Martin, I., 2007. Effects of fluid flow and calcium phosphate coating on human bone marrow stromal cells cultured in a defined 2D model system. Journal of Biomedical Materials Research A, p.411-419.
Sdougos, H. P., Bussolari, S. R. Dewey, C. F., 1984, Secondary flow and turbulence in a cone-and-plate device. J. Fluid Mech. 138, p.379-404.
Shan Sun YL, Samantha Lipsky, and Michael Cho. 2007. Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. The FASEB Journal 21, p.1472–1480.
Titushkin I, Sun S, Shin J, Cho M., 2010. Physicochemical Control of Adult Stem Cell Differentiation: Shedding Light on Potential Molecular Mechanisms. Journal of Biomedicine and Biotechnology, p.1-14.
Wang, H., Riha, G.M., Yan, S., Li, M., Chai, H., Yang, H., Yao, Q. and Chen, C., 2005. Shear stress induces endothelial differentiation from a murine embroyonic mesenchymal progenitor cell line. Arterioscler Thrombosis and Vascular Biology 25, p.1817-1823.
Wu C.C., Chao Y.C., Chen C.N., Chien S., Y.C., Chien C.C., Chiu J.J., Yen B.L., 2008. Synergism of biochemical and mechanical stimuli in the differentiation of human placenta derived multipotent cells into endothelial cells. Journal of Biomechanics 41(4), p.813-821.
Yen BL, Huang HI, Chien CC, Jui HY, Ko BS, Yao M, Shun CT, Yen ML, Lee MC, Chen YC., 2005. Isolation of multipotent cells from human term placenta. Stem Cells 23(1), p.3-9.
Yen BL, Chien CC, Chen YC, JT Chen, Huang JS, Lee FK, Huang HI., 2008. Placenta derived multipotent cells differentiate into neuronal and glial cells in vitro. Tissue Engineering Part A 14(1), p.9-17.
蔡瑞芳,2004,「幹細胞與組織工程」,後基因體時代之生物技術,第十九章;281 - 294。
呂明憲,2005,週期式圓錐平板裝置之設計與量測,國立中央大學機械工程學系碩士論文。
王文甫,2008,圓錐平板型生物反應器之設計與製作,國立中央大學機械工程學系碩士論文。
幹細胞與組織工程 教學資源中心,2008,「幹細胞學」。
幹細胞與組織工程 教學資源中心,2008,「再生醫學」。
馬大翔,2009,設計與製作圓錐平板型生物反應器以探討剪應力對大鼠骨隨幹細胞生長與型態之影響,國立中央大學機械工程學系碩士論文。
劉鉉志,2010,設計與製作圓錐平板型生物反應器探討剪應力對幹細胞生長與型態之影響,國立中央大學機械工程學系碩士論文。
指導教授 鍾志昂(Chih-ang Chung) 審核日期 2012-4-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明