博碩士論文 963203077 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.144.253.160
姓名 林耿立(Geng-Li Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 2D C-arm與3D CT影像方位校準應用於C-arm影像輔助手術導引
(2D C-Arm/3D CT image registration for C-arm-based navigation)
相關論文
★ 以擠製冷卻成型法結合相分離法製作神經再生用多孔性導管★ 整合可調式阻力之手足復健機研究
★ 應用於肝腫瘤治療之超音波影像輔助機械臂HIFU燒灼實驗系統★ 顱顏整型手術用植入物之設計與製作
★ 電腦輔助骨科手術用規劃及導引系統★ 遠端遙控機械手臂腹腔鏡手術系統
★ 頭部CT與MR影像之融合★ 手術用影像導引機械人定位及鑽孔系統
★ 機器人校正與醫學影像導引定位應用★ 顱顏手術用規劃及導引系統
★ 醫學用超音波影像導引系統★ 應用3D區域成長法於腦部磁共振影像之分割
★ 腦部手術用導引系統之方位校準及腦瘤影像分割★ 超音波影像即時震波導引
★ 腫瘤偵測與顱顏骨骼重建★ 骨科手術用C-arm影像輔助規劃及導引系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) C-arm影像輔助手術導航系統已廣泛的應用在骨科手術上,然而在C-arm前後向影像上很難正確規劃脊椎手術的路徑,因此系統使用上受到限制。本研究發展一套整合二維 C-arm影像及三維電腦斷層影像的方位校準方法,來獲得C-arm與CT影像座標系之間的轉換矩陣,使術前於CT影像上規畫好的路徑或是植入物模型經座標轉換能顯示在術中C-arm影像上,作為手術導引的依據。手術時,手術器械的方位也即時顯示在CT影像以及C-arm影像上,協助醫師更準確與可靠的定位手術器械。
  首先將 C-arm影像扭正,並計算其X-ray發射源,然後選取 C-arm影像與 CT 影像上三個相同的特徵點,利用特徵點的座標建立C-arm與 CT影像座標系的初始方位校準,接著以光束投影法(Ray Casting)產生模擬X-ray成像原理的DRR影像。本研究採用Nvidia的CUDA開發環境來平行處理X-ray吸收性的線積分運算,以五種灰階為基礎的相似性量測(正規化交互關聯性、梯度關聯性、區域強度關聯性、梯度差異關聯性、共同資訊演算法)搭配三種最佳化方法(包威爾演算法、下坡單型法、基因演算法)進行比較,評估各種演算法在影像對位結果的準確性、收斂範圍與花費時間。結果顯示以正規化交互關聯性作為影像量測的目標函數,並使用下坡單型法搜尋最佳的方位校準矩陣,可使C-arm影像與DRR影像達到最大的相似度。
  2D-3D方位校準誤差以脊椎假體模型進行實驗評估,初始收斂範圍限定在±10mm和±10度內,實驗共四十組,平均位移誤差及平均角度誤差分別為0.22mm與0.25 度,成功率為90%,平均對位所需時間為16秒。
摘要(英) C-arm image assisted surgical navigation system has been broadly applied to orthopedic surgery. For spinal surgery, accurate path planning on the C-arm AP image is difficult. Therefore, the applicability of the system is restricted. This research develops a 2D C-arm/3D CT image registration method to obtain the transformation matrix between C-arm and CT image coordinate frames. Through the transformation matrix, the preplanned surgical path or implant model on preoperative CT images can be transformed and displayed on the C-arm images for surgical guidance. During operation, the locations of surgical instruments will also be displayed on both CT and C-arm images to help the surgeon to precisely and safely position surgical instruments.
  First, the C-arm images are calibrated and the focus point of X-ray is determined. Then, select three identical characteristic points from C-arm images and CT images to obtain the initial registration between the C-arm and CT image frames. After that, the ray-casting algorithm is applied to generate digital reconstructed radiographs (DRR) from CT images. To speed up the generation of DRR, an Nvida’s CUDA graphics processing unit (GPU) is used for parallel computing of linear integration of X-ray absorptivity. Five similarity measures of 2D-3D registration including Normalized Cross-Correlation, Gradient Correlation, Pattern Intensity, Gradient Difference Correlation, and Mutual Information combined with three optimization methods including Powell, Downhill Simplex, and Genetic Algorithm are applied to evaluate the performance of converge range, efficiency and accuracy. The results show that the combination of Normalized Cross-Correlation measure with Downhill Simplex optimization algorithm has maximum correlation and similarity in C-arm and DRR images.
  Saw bone models are used in the experiment to evaluate registration accuracy. The initial convergence range is set within ±10mm and ±10 degree. The average errors in displacement and orientation of forty experiment sets are 0.22mm and 0.25° respectively. The success rate is approximately 90% and average registration time takes 16 seconds.
關鍵字(中) ★ 計算統一設備架構
★ 電腦輔助手術導引
★ 數位重建放射影像
★ 2D-3D 方位校準
關鍵字(英) ★ CUDA
★ Computer-assisted Surgical navigation
★ DRR
★ 2D-3D Registration
論文目次 摘要 I
ABSTRACT II
目錄 IV
圖目錄 VII
表目錄 XI
第1章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 2
1-2-1 基於影像特徵為基礎的對位方法(Feature-based) 4
1-2-2 基於影像灰階為基礎的對位方法(Intensity-based) 5
1-2-3 基於影像梯度為基礎的對位方法(Gradient-based) 7
1-2-4 總結文獻回顧 8
1-3 研究方法簡介 9
1-4 論文介紹 10
第2章 系統架構 11
2-1 系統流程 11
2-2 硬體架構 13
2-3 軟體架構 15
2-4 系統操作流程 15
第3章 研究方法 23
3-1 系統座標系統 26
3-1-1 座標系統定義 26
3-1-2 轉換矩陣 27
3-1-3 座標系統間轉換關係 27
3-1-4 病患與CT影像座標轉換的數學模型 30
3-2 CT影像處理 33
3-3 C-ARM影像處理 35
3-3-1 影像扭正及發射源計算 35
3-3-2 校正器影像平面與C-arm影像方位校準 36
3-3-3 影像上鋼珠的去除與修補 39
3-3-4 影像限制區域 42
3-3-5 影像上手術器械之去除 43
3-4 二維與三維影像資料的方位校準 48
3-4-1 初始方位校準 49
3-4-2 理想方位校準(Ground Truth) 51
3-5 建構DRR影像 55
3-5-1 光束投射法(Ray Casting) 56
3-5-2 濺射成像法(Splatting) 57
3-5-3 光束投射法與濺射成像法應用產生DRR影像 59
3-6 定義有效的影像區域 62
3-7 影像相似性量測 65
3-7-1 像素灰階為基礎之比對方法的介紹 65
3-7-2 相似性量測可靠性分析 72
3-8 最佳化方法 81
3-8-1 包威爾演算法(Powell Method) 82
3-8-2 下坡單型法(Downhill Simplex Method) 84
3-8-3 基因演算法(Genetic Algorithm) 88
3-9 2D-3D方位校準使用CUDA加速 91
3-9-1 CUDA理論 91
3-9-2 CUDA程式之實作架構 94
3-9-3 平行計算:CPU與GPU的運算時間比較 97
第4章 實驗及討論 99
4-1 誤差分析方法 100
4-2 理想轉換矩陣 101
4-3 方位校準實驗 103
4-3-1 理想DRR影像與真實C-arm影像ROI區域收斂範圍實驗 103
4-3-2 評估最佳化與相似性量測實驗 109
4-3-3 方位校準實驗 114
4-3-4 方位校準-ROI區域實驗 122
第5章 結論討論與未來展望 124
參考文獻 126
參考文獻 [1].P. J. Besl, N. D. McKay, “A Method for Registration of 3-D Shapes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, pp. 239-256, 1992.
[2].I. Marintschev, F. Gras, K. Klos, A. Wilharm, T. Muckley and G. O. Hofmann, “Navigation of vertebro-pelvic fixations based on CT-fluoro matching” , European Spine Journal, Vol.19, pp. 1921-1927 , 2010.
[3].M. Shoham, D. S. Brink, A. Friedlander, N. Knoller, “Bone Mounted Miniature Robotic System for Spine Surgery”,IEEE International Conference on Biomedical Robotics and Biomechatronics, Vol.19, pp.917- 920 , 2006.
[4].M.Avanzo, P.Romanell, “Spinal radiosurgery: technology and clinical outcomes” , Neurosurgical Review, Vol.32, pp.1-13 , 2009.
[5].J. Sanders, E. Kandrot, " CUDA by Example:an introduction to general purpose gpu programming", ISBN-0131387685, Addison Wesley , 2010.
[6].O. Gonschorek, S. Hauck, U. Spiegl, T. Weis, R. Patzold and V. Buhren, "O-armR-based spinal navigation and intraoperative 3D-imaging: first experiences" , European Journal Of Trauma And Emergency Surgery , vol. 37, pp.99-108, 2011.
[7].P. Markelj, D. Tomaževič, B. Likar, “A review of 3D/2D registration methods for image-guided interventions”, Medical Image Analysis, in press , 2010.
[8].R. Mohamed, A. H. William, D. K. Richard, D. A. Dennis, “Effect of segmentation errors on 3D-to-2D registration of implant models in X-ray images” , Biomech, vol.38, pp.229-39, 2005.
[9].H. Livyatan, Z. Yaniv, L. Joskowicz, “Gradient-based 2-D/3-D rigid registration of fluoroscopic X-ray to CT.”, IEEE Transactions on Medical Imaging, vol. 22, no. 11, pp. 1395-1406, 2003.
[10].G. Zheng, L. P. Nolte, S. J. Ferguson., "Scaled, patient specific 3D vertebral model reconstruction based on 2D lateral fluoroscopy.", International Journal of Computer Assisted Radiology and Surgery, Vol. 6, pp.351-366, 2010.
[11].L. Joskowicz, D. Knaan, “How to achieve fast, accurate, and robust rigid registration between fluoroscopic X-ray and CT images,” Computer Assisted Radiology and Surgery, pp. 147-152, 2004.
[12].P. Markelj, D. Tomazevic, F. Pernus, “Robust Gradient-Based 3D/2D Registration of CT and MR to X-Ray Images.” , IEEE Transactions on Medical Imaging, vol. 27, no. 12, pp. 1704–1714 , 2008.
[13].P. Markelj,D.Tomaˇ zeviˇ c, B. Likar and F. Pernuˇ s , "Registration of 3D Pre-interventional to 2D Intra-interventional Medical Images" , Medical Physics and Biomedical Engineering, vol. 25,pp. 1924–1927, 2009.
[14].W. E. Lorensen, H. E. Cline, "Marching cubes: a high resolution 3D surface construction algorithm.", Computer Graphics, Vol. 21, pp. 163-169, 1987.
[15].A. Telea, “An image inpainting technique based on the fast marching method” , Journal of Graphics Tools, Vo l.9, pp. 25-36, 2004.
[16].J. Canny, "A computational approach to edge detection.", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, 1986.
[17].G. Zheng, J. Kowal, M.A. Gonzalez Ballester, "Registration techniques for computer navigation", Current Orthopaedics, pp. 170-179, 2007.
[18].F. Ino, J. Gomita, Y. Kawasaki, K. Hagihara., “A GPGPU approach for accelerating 2-D/3-D rigid registration of medical images”. In Parallel and Distributed Processing and Applications, vol. 4330, PP. 939-950, 2006.
[19].Youngjun Kim, Kang-Il Kim, Jin hyeok Choi, Kunwoo Lee, "Novel methods for 3D postoperative analysis of total knee arthroplasty using 2D–3Dimage registration.", Clinical Biomechanics, pp. 384-391, 2011.
[20].H. P. William,S. A. Teukolsky,W. T. Vetterling ,B. P. Flannery, " Numerical Recipes: The Art of Scientific Computing", ISBN-0521884071, Cambridge University Press, UK, 2007.
[21].G. P. Penney,J. Weese , P. Desmedt , D. Hill,D.J.Hawkes, “A Comparison of Similarity Measures for Use in 2-D–3-D Medical Image Registration.” , IEEE Transactions on Medical Imaging, vol.17, no.4, pp. 586-595, 1998.
[22].D. Skerl,D.Tomazevi,B. Likar, "Evaluation of similarity measures for reconstruction-based registration in image-guided radiotherapy and surgery” , International Journal of Radiation Oncology Biology Physics, vol. 65, pp. 943–953, 2006.
[23].楊遠祥, "應用於股骨轉子間骨折回復手術之C-arm based手術導引系統", 碩士論文, 中央大學機械工程研究所, 2005.
[24].戴君益, “C-arm影像與電腦斷層影像之方位校準方法”, 碩士論文, 中央大學機械工程研究所, 2007.
[25].朱鴻宇, “應用輪廓與灰階特徵於二維C-arm影像及三維電腦斷層影像之方位校準”, 碩士論文, 中央大學機械工程研究所, 2008.
[26].蘇木春、張孝德“機器學習:類神經網路、模糊系統及基因演算法則”, 全華圖書科技股份有限公司, Ch9,1999.
指導教授 曾清秀(Ching-Shiow Tseng) 審核日期 2012-1-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明