參考文獻 |
[1] Branemark, P. I., Brerine, U.and Adell, R., “Intraosseous Anchorage of Dental Prosthess: I Experimental Studies,” Scand J Plast Reconstar Surg, pp. 81-100 (1963).
[2] Brunski, J. B., The Influence of Force, Motion and Related Quantities on the Responseof Bone to Implants, Raven Press Ltd. (1998).
[3] 王大介,「利用共振頻率分析法研究植體在類似不同骨密度環境下之穩固度」,碩士論文,國防醫學院牙醫科學研究所,臺北 (2004)。
[4] Bogaerde, L. D., “A Proposal for the Classification of Bony Defects Adjacent to Dental Implants,” International Journal of Periodontics and Restorative Dentistry, Vo1. 24, pp. 264-271 (2004).
[5] 莊瀚伯,「牙科植體術後骨缺損型態之結構分析」,碩士論文,國立中央大學機械工程研究所,桃園 (2006)。
[6] 陳梓尉,「共振頻率法於牙根植體缺損位置判別研究」,碩士論文,國立中央大學機械工程研究所,桃園 (2007)。
[7] 杜瑋珊,「共振頻率法之牙科植體個體骨缺損檢測研究」,碩士論文,國立中央大學機械工程研究所,桃園 (2009)。
[8] 吳柏勳,「植牙術後穩固度評估研究」,碩士論文,國立中央大學 機械工程研究所,桃園 (2011)。
[9] Albrektsson, T. and Albrektsson, B., “Osseointehration of Bone Implants: a Review of an Alterative Mode of Fixation,” Acta Orthopaedica Scandinavica, Vol. 58, pp. 567-577 (1987).
[10] Johansson, C. B. and Albreksson, T., “Integration of Screw Implants in the Rabbit: a One-Year Follow-up of Removal Torque of Titanium Implants,” International Journal of Oral and Maxillofacial Implants, Vol. 2, No. 2, pp. 69-76 (1987).
[11] Oka, H., Yamamoto, T., Saratani, K. and Kawazoe, T., “Application of Mechanical Mobility of Periodontal Tissues to Tooth Mobility Examination,” Medical & Biological Engineering & Computing, Vol. 27, No. 1, pp. 75-81 (1989).
[12] 陳璟鋒,「利用共振頻率初始值預測牙科植體之癒合時間及可能穩定值:以動物實驗及離體實驗」,碩士論文,臺北醫學大學口腔復健醫學研究所,臺北 (2003)。
[13] Leholm, U. and Zarb, G. A., “Tissue-Integrated Prostheses: Osseointegration in Clinical Denisity,” Quintessence Publishing, Chicago(IL), pp. 199-209 (1985).
[14] Sunden, S., Grondahl, K. and Grondahl, H. G., “Accuracy and Precision in the Radiographic Diagnosis of Clinical Instability in Brånemark Dental Implants,” Clinical Oral Implants Research, Vol. 6, No. 4, pp. 220-226 (1995).
[15] 李友順,「開發臨床骨密度儀之研究」,碩士論文,國立成功大學醫學工程研究所,臺南 (2005)。
[16] Singh, R, The Design Fabrication and Characterization of an Ultrasonic Crack Detection System for Human Teeth, PhD Thesis, University of California Los Angles, California (2005).
[17] Thomson, W. T., Theory of Vibration with Applications, Prentice-Hall, New York, pp. 221-229 (1995).
[18] Meredith, N., Alleyne, D. and Cawley, P., “Quantitative Determination of the Stability of the Implant-Tissue Interface Using Resonance Frequency Analysis,” Clinical Oral Implants Research, Vol. 7, No. 3, pp. 261-267 (1996).
[19] Sennerby, L. and Meredith, N., “Impant Stability Measurements Using Resonance Frequency Analysis: Biological and Biomechanical aspects and Clinical Implications,” Periodontology 2000, Vol. 47, pp. 51-66 (2008).
[20] Rasmusson, L., Meredith, N., Cho, I. H. and Sennerby, L., ”The Influence of Simultaneous versus Delayed Placement on the Stability of Titanium Implants in Onlay Bone Grafts: A Histologic and Biomechanic Study in the Rabbit,” International Journal of Oral and Maxillofacial Surgery, Vol. 28, pp. 224-231 (1999).
[21] Tözüm, T. F., Turkyilmaz, I. and McGlumphy, E. A., “Relationship between Dental Implant Stability Determined by Resonance Frequency Analysis Measurements and Peri-implant Vertical Defects: an in Vitro Study,” Journal of Oral Rehabilitation, Vol. 35,pp. 739-744 (2008).
[22] Tözüm, T. F., Turkyilmaz I. and Bal, B. T., “Initial Stability of Two Dental Implant Systems: Influence of Buccolingual Width and Probe Orientation on Resonance Frequency Measurements,” Clinical Implant Dentistry and Related Research, Vol. 12, No. 3, pp. 194-201 (2010).
[23] Tözüm T. F., Bal B. T., Turkyilmaz I.and Gulay, G., “Which Device is more Accurate to Determine the Stability/Mobility of Dental Implants? A Human Cadaver Study,” Journal of Oral Rehabilitation, Vol. 37, pp. 217-224 (2010).
[24] Lee, S. Y., Huang, H. M., Lin, C. Y. and Shih, Y. H., “In vivo and in vitro Natural Frequency Analysis of Periodontal Conditions, an Innovative Method,” Journal of Periodontal Research, Vol. 71, No. 4, pp. 632-640 (1999).
[25] Huang, H. M., Lee, S. Y., Yeh, C. Y. and Lin, C. T., “Resonance Frequency Assessment of Dental Implant Stability with Various Bone Qualities : a Numerical Approach,” Clinical Oral Implants Research, Vol. 13, pp. 65-74 (2002).
[26] Natali, A. N., Pavan, P. G., Schileo, E. and Williams, K. R., “A Numerical Approach to Resonance Frequency Analysis for the Investigation of Oral Implant Osseointegration,” Journal of Oral Rehabilitation Res,.Vol.33, No.9, pp. 674–681 (2006).
[27] Pattijn, V., Van Lierde, C., Van Der Perre, G., Naert, I. and Vander Sloten, J., “The Resonance Frequencies and Mode Shapes of Dental Implants: Rigid Body Behaviour versus Bending Behaviour. A Numerical Approach,” Journal of Biomechanics, Vol. 39, No. 5, pp. 939-947 (2006).
[28] Swider, P., Guérin, G., Baas J., Søballe, K. and Bechtold, J. E., “Characterization of Bone-implant Fixation Using Modal Analysis: Application to a Press-fit Implant Model,” Journal of Biomechanics, Vol. 42, pp. 1643-1649 (2009).
[29] Lee, L. Y., Huang, H. M., Hung, J. M., Chou, S. Y., Lee, S. Y., Chiu, W. T., Tsai, C. M., Lo, Y. C. and Lin, C. T., “Dynamic Response Analysis of the Mechanism of Mandible Trauma,” Chinese Journal of Dental Research, Vol 23, No.4, pp. 304-312 (2004).
[30] He, J. and Fu, Z. F., Modal Analysis, Butterworth-Heinemann, Oxford. (2001).
[31] Mellal, A., Wiskott, H. W. A., Botsis, J., Scherrer, S. S. and Belser U. C., “Stimulating Effect of Implant Loading on Surrounding Bone Comparison of Three Numerical Models and Validation by In Vivo Data,” Clinical Oral Implants Research, Vol. 15, pp. 239-248 (2004).
[32] Virani, N. A., Harman, M. ,Li, K., Levy, J., Pupello, D. R. and Frankle, M. A., “In Vitro and Finite Element Analysis of Glenoid Bone/Baseplate Interaction in the Reverse Shoulder Design,” Journal of Shoulder and Elbow Surgery, Vol. 17, pp. 509-521 (2008).
[33] 劉晉奇,褚晴暉,有限元素分析與 ANSYS 的工程應用,滄海 (2006)。
|