博碩士論文 973203021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.119.123.252
姓名 陳淮山(Huai-Shan Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 粉末冶金齒輪齒根疲勞強度試驗與運轉測試驗證
(Fatigue Test for Tooth Root Bending Strength of Powder Metallurgy Gears and Running Verification Test)
相關論文
★ LED封裝點膠系統創新設計之研究★ 夾治具概念設計方法之研究
★ 葡萄糖檢測電極基材之化銅電鍍鎳金製程開發研究★ 印刷電路板蝕刻製程設計與可視化驗證實驗
★ 平行軸錐形齒輪齒根應力特性之研究★ 漸開線直齒錐形齒輪齒根應力之量測與分析
★ 單軸押出機減速機系列產品之計算機輔助開發模式之研究★ 漸開線直齒錐形齒輪齒根應力計算模型之初步研究
★ 非旋轉式表面電漿儀之創新設計與製作★ 電腦輔助單軸押出機減速機系列產品之開發
★ 單軸押出機減速機箱體系列化發展模式之研究★ 電腦輔助機械零件製造成本預估 – 以單軸押出機減速機為例
★ 直齒錐形齒輪齒根應力解析計算模式之研究★ 具點接觸型態之歪斜軸錐形齒輪對齒面疲勞破壞之初步研究
★ 粉末冶金齒輪齒根疲勞強度之研究★ 電腦輔助設計程式模組之建構-以齒輪減速機為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 粉末冶金技術能夠以低成本實現外形複雜之小型齒輪的量產,此優勢使得粉末冶金齒輪的重要性受到矚目;但由於粉末冶金齒輪具有空孔性之結構,此特徵將可能導致其具有較低之齒根疲勞強度,若要將粉末冶金齒輪作為傳動件使用,則須對其齒根疲勞強度作出充分的檢驗.
  本研究針對粉末冶金正齒輪的齒根疲勞強度進行檢測,並以疲勞曲線呈現其結果,試驗樣本之成分為Fe-4Ni-0.5Mo-1.5Cu-0.6C;主要的實驗方式是單齒齒根疲勞試驗,另輔以齒輪對運轉試驗為驗證,確保實驗結果能忠實呈現齒輪在一般使用狀況下的強度.疲勞曲線與可靠度的計算,是採韋伯分布與ASTM E 739-91線性疲勞數據統計分析兩種方法進行,齒根應力則是依ISO 6336-3標準規範計算.
  實驗結果顯示兩種試驗所得之疲勞曲線互為平行,如此可透過較有效率的單齒齒根疲勞試驗,推測齒輪於真實狀況下的強度表現.本研究亦將材料為Fe-1.75Ni-0.5Mo-1.5Cu-0.6C且經淬火之粉末冶金齒輪作為對照,比較該齒輪與本試驗齒輪的疲勞強度,發現該齒輪之強度整體而言較低,但當循環數越接近無限壽命區時,兩齒輪之強度則越趨接近;另外,本研究亦觀察到齒輪經運轉後,產生了點蝕與刮傷的齒面疲勞破壞.
摘要(英) Powder metallurgy technology or PM technology plays an important role in gear manufacturing in recent years because it is cost-saving and efficient to produce small gears with complex shapes.  However,  the tooth root fatigue strength of the PM gear is reduced because it is porous.  In order to use the PM gear for the power transmission,  it is necessary to explore the tooth root fatigue strength of the PM gear for gear design.
  In order to determine the tooth root fatigue strength of the PM gear,  a fatigue test for single tooth of a spur gear was conducted.  The fatigue test results were also verified by a running test for the spur gear pair on a back-to-back test rig under real operational conditions.  The composition of the testing spur gear is Fe-4Ni-0.5Mo-1.5Cu-0.6C.  The test results are shown as S-N curves calculated based on Weibull distribution and ASTM E 739-91 standard.  The corresponding tooth root stress is calculated based on ISO 6336-3 standard.
  The S-N curves obtained from the single tooth fatigue test and the running test are parallel.  It means the tooth root fatigue strength under real operational conditions can be also estimated from the single tooth fatigue test,  which is more time-saving and cost-saving to conduct.  The available fatigue strength of a quenched PM gear with composition Fe-1.75Ni-0.5Mo-1.5Cu-0.6C is also compared with that of the test gear in the study.  The tooth bending strength of the quenched gear is lower than that of the test gear,  but it becomes closer to that of the test gear,  in the range of high loading cycles.  From the running test results,  pitting and scuffing were also found on the tooth flanks.
關鍵字(中) ★ 運轉試驗
★ 疲勞試驗
★ 齒根疲勞強度
★ 粉末冶金齒輪
關鍵字(英) ★ fatigue test
★  tooth root fatigue strength
★ powder metallurgy gear
★  running test
論文目次 摘要 i
Abstract ii
謝誌 iv
目錄 v
圖目錄 vii
表目錄 x
符號表 xi
第1章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.3 研究目的 6
第2章 基礎理論 7
2.1 材料疲勞破壞概論 7
2.2 齒根應力計算 9
2.3 負載位置之計算 15
2.3.1 單齒疲勞試驗之負載位置計算 15
2.3.2 齒輪對運轉試驗之負載位置計算 20
2.4 可靠度與疲勞數據之統計分析 23
2.4.1 韋伯分布 23
2.4.2 ASTM E 739-91線性疲勞數據統計分析方法 27
第3章 實驗設備原理與規劃 30
3.1 試驗樣本 30
3.2 單齒疲勞實驗 31
3.2.1 單齒疲勞實驗設備 31
3.2.2 單齒疲勞實驗原理 35
3.2.3 單齒疲勞實驗規劃 37
3.3 齒輪對運轉實驗 41
3.3.1 齒輪對運轉實驗設備 41
3.3.2 齒輪對運轉實驗原理 48
3.3.3 齒輪對運轉實驗規劃 50
第4章 實驗結果與討論 53
4.1 單齒疲勞實驗結果 53
4.1.1 齒根靜態強度試驗結果 53
4.1.2 單齒疲勞試驗結果 54
4.1.3 可靠度與疲勞曲線之計算 58
4.2 齒輪對運轉實驗結果 62
4.3 實驗結果討論 65
4.3.1 試驗結果之韋伯分布特性 65
4.3.2 韋伯分布與ASTM E 739-91方法所得之疲勞曲線之比較 67
4.3.3 材料與熱處理相異之粉末冶金齒輪的齒根疲勞強度比較 68
4.3.4 齒輪對運轉試驗與單齒疲勞試驗結果之比較 70
第5章 結論 71
5.1 結論 71
5.2 未來展望 72
參考文獻 73
附錄一 壓片長度差之設計 76
附錄二 ASTM E 739-91方法之參數D對照表 78
參考文獻 [1] 黃坤祥,粉末冶金學,中華民國粉末冶金學會,新竹,2003.
[2] Alban, L. E., Systematic Analysis of Gear Failures, American Society for Metals, 1985.
[3] Oda, S., Koide, T., Hirata, H., Kiguchi, S., and Wada, M., “Study on Load-Bearing Capacity of Sintered Metal Gears,” Transactions of the Japan Society of Mechanical Engineers, Part C, v 59, n 565, pp 2825-2829, 1993.
[4] Meister, T. J. and Eckersley, J. S., “Improving Fatigue Life of Gear by Shot Peening,” Advances in Gear Technology: A Symposium on Gear Manufacturing Through Powder Metallurgy, 1998.
[5] Nigarura, S., Parameswaran, R., and Trasorras, J. R. L., “Bending Fatigue of Surface Densified Gears: Effect of Root Densification Depth and Tooth Loading Mode on Fatigue Life,” Advances in Powder Metallurgy and Particulate Materials, 2006.
[6] Fordén, L., Bengtsson, S., and Bergstrom, M., “PM Takes on Truck Test in The Gearbox,” Metal Powder Report, v 59, n 11, pp 14-17, 2004.
[7] Kato, M., Inoue, K., Deng, G., Sato, T., and Kameko, M., “Evaluation of the Fatigue Strength of Sintered Steel Based on Fracture Mechanics,” Transactions of the Japan Society of Mechanical Engineers, Part C, v 62, n 599, pp 2851-2856, 1996.
[8] Cedergren, J., Melin, S., and Lidstrom, P., “Numerical Investigation of Powder Metallurgy Manufactured Gear Wheels Subjected to Fatigue Loading,” Powder Technology, v 160, pp 161-169, 2005.
[9] Predki, W., Jarchow, F., and Kolev, P., “Reliability of Sintered Gear Wheels,” VDI Berichte, v 1, n 1665, pp 263-278, 2002.
[10] 王婉茹,“粉末冶金齒輪齒根疲勞強度之研究”,國立中央大學機械工程學系,碩士論文,2008.
[11] Stephens, R. I., Fatemi, A., Stephens, R. R., and Fuchs, H. O., Metal Fatigue in Engineering, 2nd edition, John Wiley & Sons, Inc., Canada, 2001.
[12] Abernethy, R. B., The New Weibull Handbook, 5th edition, Abernethy, R. B., 2006.
[13] Yang, Q. J., “Fatigue Test and Reliability Design of Gears,” International Journal of Fatigue, v 18, n 3, pp 171-177, 1996.
[14] ASTM E 739-91 Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (epsilon-N) Fatigue Data, ASTM international, 2004.
[15] Little, R. E. and Jebe, E. H., Statistical Design of Fatigue Experiments, Applied Science Publishers, London, 1975.
[16] Budynas, R. G. and Nisbett, J. K., Shigley’s Mechanical Engineering Design, 8th edition in SI units, McGraw-Hill, New York, 2008.
[17] ISO 6336 Calculation of Load Capacity of Spur and Helical Gears, Part 3: Calculation of tooth bending strength, ISO, 1996.
[18] DIN 3960 Concepts and Parameters Associated with Cylindrical Gears and Cylindrical Gear Pairs with Involute Teeth, 1980.
[19] 彭鴻霖,可靠度技術手冊-可靠度機率理論,中華民國品質學會,臺北市,2000.
[20] Keceioglu, D., Reliability and Life Testing Handbook, 2nd edition, PTR Prentice-Hall, Inc., New Jersey, 1994.
[21] Bowden, D. C. and Graybill, F. A., “Confidence Bands of Uniform and Proportional Width for Linear Models,” Journal of the American Statistical Association, v 61, n 313, pp 182-198, 1966.
[22] http://stattrek.com/ 常態分布標準分數與卡方分布臨界值之計算程式.
[23] DIN 3967 Backlash, Tooth Thickness Allowances and Tooth Thickness Tolerances; Bases, Calculation of Tooth Thickness Allowances, Conversion of Allowances for the Different Measuring Methods, 1987.
[24] Firrao, D., Matteis, P., Spena, P. R., and Mortarino, G. M. M., “Fatigue Crack Growth in Inhomogeneous Steel Components,” International Journal of Fatigue, v 32, pp 864-869, 2010.
[25] Laurito, D. F., Baptista, C. A. R. P., Torres, M. A. S., and Abdalla, A. J., “Microstructural Effects on Fatigue Crack Growth Behavior of a Microalloyed Steel,” Procedia Engineering, v 2, pp 1915-1925, 2010.
指導教授 蔡錫錚(Shyi-Jeng Tsai) 審核日期 2012-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明