博碩士論文 983203069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.217.84.117
姓名 杜文鈞(Wen-chun Tu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超音波影像輔助穿刺導引系統
(Ultrasound-assisted biopsy navigation system)
相關論文
★ 以擠製冷卻成型法結合相分離法製作神經再生用多孔性導管★ 整合可調式阻力之手足復健機研究
★ 應用於肝腫瘤治療之超音波影像輔助機械臂HIFU燒灼實驗系統★ 顱顏整型手術用植入物之設計與製作
★ 電腦輔助骨科手術用規劃及導引系統★ 遠端遙控機械手臂腹腔鏡手術系統
★ 頭部CT與MR影像之融合★ 手術用影像導引機械人定位及鑽孔系統
★ 機器人校正與醫學影像導引定位應用★ 顱顏手術用規劃及導引系統
★ 醫學用超音波影像導引系統★ 應用3D區域成長法於腦部磁共振影像之分割
★ 腦部手術用導引系統之方位校準及腦瘤影像分割★ 超音波影像即時震波導引
★ 腫瘤偵測與顱顏骨骼重建★ 骨科手術用C-arm影像輔助規劃及導引系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 超音波影像穿刺取樣是診斷腫瘤良性或惡性的常見方法。以徒手或利用探頭旁加裝導引裝置的穿刺方式並無法解決穿刺針受外力變形所造成的穿刺失誤,且使用導引裝置的穿刺針必須順著超音波掃描面穿刺,限制了在需要避開特定組織時改變穿刺方向的彈性,因此臨床上醫師往往難以執行深層小腫瘤的穿刺取樣。
本研究發展出一套超音波影像輔助穿刺導引系統。藉由磁場定位裝置以及超音波影像定位技術,將超音波影像、腫瘤、穿刺針的空間方位轉換至同一個座標系中,並以即時顯示腫瘤與穿刺針針間相對方位的影像來協助醫師進行穿刺路徑規劃及導引。此外,也設計了一穿刺輔助裝置,利用馬達讓穿刺針等速的旋轉,有效減少穿刺時穿刺針受力變形的現象,並且能夠維持穩定的刺入方向。本研究亦提出以雷射測距儀量測胸口的起伏,據以控制病患憋氣在與影像掃描時的同一呼吸狀態,降低呼吸造成肝組織移位變形,影響穿刺的準確性問題,
實驗以豬肝和五花肉為假體,在系統的導引下進行多次穿刺實驗,結果顯示使用18G的穿刺針穿刺,平均距離誤差為3.17mm,最大誤差為4.38mm;使用21G穿刺針,平均距離誤差為3.36mm,最大誤差為4.62mm。此一系統應可幫助醫師穿刺一公分以上的深層腫瘤。
摘要(英) Ultrasonic guided biopsy is the most popular approach to diagnose whether tumor is benign or malignant. However, biopsy by free-hand or using probe-attached guidance device cannot avoid needle deflection and misalignment due to external forces. In addition, the biopsy direction must follow and along the plane of ultrasound image which restrict the flexibility to adjust the needle direction to avoid critic tissues. Therefore, it is hard for physicians to do deep and small tumor biopsy clinically.
In this research, an ultrasound-assisted biopsy navigation system has been developed. By using electromagnetic tracking system and ultrasound positioning technology, the positions of ultrasound images, tumors, and biopsy needle are transferred to the same coordinate system. Real-time image display of the relative position of tumor and biopsy needle tip will assist the physician to plan and guide biopsy direction. Moreover, a biopsy assistive device, using a stepping motor to enable the rotation of the needle, is designed to reduce needle deflection due to external forces. To reduce the influence of liver displacement and deformation to biopsy accuracy due to respiration, a Laser Range Finder is applied to measure the ups and downs of the patient’s chest to control the breath status during insertion is identical to that during ultrasound scanning.
In the experiments, pork liver and pork belly are applied as biopsy phantoms. The results of several experiments show that the average and maximum distance errors of using 18 Gauge needle are 3.17mm and 4.38mm respectively, while the average and maximum distance errors of using 21 Gauge needle are 3.36mm and 4.62mm respectively. It indicates that the developed system should be able to `assist physicians to biopsy deep tumor with a diameter greater than 1cm.
關鍵字(中) ★ 方位校正
★ 超音波影像
★ 穿刺
★ 影像輔助穿刺
關鍵字(英) ★ Biopsy
★ Registration
★ Image-assisted Biopsy
★ Ultrasound Image
論文目次 摘要..........................I
ABSTRACT..........................II
目錄..........................II
圖索引..........................V
表索引..........................VIII
第1章 緒論..........................1
1-1 研究動機..........................1
1-2 文獻回顧..........................2
1-2-1 穿刺導引系統相關研究..........................3
1-2-2 穿刺針刺入軟組織相關研究..........................4
1-3 研究方法簡介..........................6
1-4 論文介紹..........................7
第2章 系統架構..........................8
2-1 系統作業流程..........................8
2-2 硬體架構..........................10
2-2-1 超音波機..........................10
2-2-2 磁場式定位器 11
2-2-3 電腦以及影像擷取卡..........................11
2-2-4 穿刺針..........................12
2-2-5 穿刺裝置..........................12
第3章 研究方法..........................13
3-1 座標系統..........................13
3-1-1 座標系定義..........................13
3-1-2 座標系統轉換..........................14
3-2 超音波影像的方位校正..........................16
3-2-1 超音波探頭夾具..........................17
3-2-2 超音波影像方位校正..........................18
3-3 穿刺針尖端的方位校正..........................22
3-4 導引系統軟體的建構..........................25
3-4-1 建立病患座標系..........................26
3-4-2 定位病灶位置..........................27
3-4-3 穿刺路徑投影..........................28
3-4-4 穿刺針刺入路徑規劃..........................29
3-4-5 依輔助瞄準標靶刺入..........................30
3-5 穿刺裝置..........................31
3-5-1 穿刺針變形原因..........................32
3-5-2 穿刺針變形驗證與評估..........................33
3-5-3 穿刺裝置設計..........................38
3-6 病患呼吸問題..........................42
第4章 實驗結果及討論..........................43
4-1 超音波影像方位校正誤差實驗..........................43
4-2 穿刺針變形實驗..........................51
4-2-1 穿刺洋菜凍假體實驗..........................51
4-2-2 穿刺豬肝假體實驗..........................57
4-3 超音波影像穿刺導引實驗..........................61
第5章 結論與未來展望..........................65
參考文獻..........................66
參考文獻 [1]. N. Abolhassani, R. Patel and M. Moallem, "Needle insertion into soft tissue: A survey," Med. Eng. Phys., vol. 29, pp. 413-431, 2007.
[2]. N. Abolhassani, R. Patel and M. Moallem, "Experimental study of robotic needle insertion in soft tissue," in International Congress Series, pp. 797-802, 2004.
[3]. N. Abolhassani, R. Patel and M. Moallem, "Trajectory generation for robotic needle insertion in soft tissue," 26th Annual International Conference of the IEEE EMBS, pp. 2730-2733, 2004.
[4]. N. Abolhassani and R. V. Patel, "Deflection of a flexible needle during insertion into soft tissue," 28th Annual International Conference of the IEEE EMBS, pp. 3858-3861, 2006.
[5]. R. Alterovitz, K. Y. Goldberg, J. Pouliot and I. C. Hsu, "Sensorless motion planning for medical needle insertion in deformable tissues," IEEE Transactions on Information Technology in Biomedicine, vol. 13, pp. 217-225, 2009.
[6]. H.S. Bassan, R.V. Patel, and M. Moallem, "A Novel Manipulator for Percutaneous Needle Insertion: Design and Experimentation, "IEEE/ASME Trans. Mechatron., vol. 14, no. 6, pp. 746-761, 2009.
[7]. D. Bi and Yang Lin, "Vibrating needle insertion for trajectory optimization," Proceedings of the 7th World Congress on Intelligent Control and Automation, pp. 7444-7448, 2008.
[8]. N. Bluvol, A. Shaikh, A. Kornecki, D. D. R. Fernandez, D. Downey and A. Fenster, "A needle guidance system for biopsy and therapy using two-dimensional ultrasound," Med. Phys., vol. 35, pp. 617, 2008.
[9]. A. Carra and J. C. Avila-Vilchis, "Multilayer needle insertion modeling for robotic percutaneous therapy," 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), pp. 1-4, 2010.
[10]. G. Chapman, D. Johnson and A. Bodenham, "Visualisation of needle position using ultrasonography," Anaesthesia, vol. 61, pp. 148-158, 2006.
[11]. Dong Ni, Wing Yin Chan, Jing Qin, Yim-Pan Chui, Ingrid Qu, S. S. M. Ho and Pheng-Ann Heng, "A Virtual Reality Simulator for Ultrasound-Guided Biopsy Training," Computer Graphics and Applications, IEEE, vol. 31, pp. 36-48, 2011.
[12]. C. Freschi, E. Troia, V. Ferrari, G. Megali, A. Pietrabissa and F. Mosca, "Ultrasound guided robotic biopsy using augmented reality and human-robot cooperative control," 31st Annual International Conference of the IEEE EMBS, pp. 5110-5113, 2009.
[13]. D. Glozman and M. Shoham, "Flexible needle steering and optimal trajectory planning for percutaneous therapies," Medical Image Computing and Computer-Assisted Intervention–MICCAI 2004, pp. 137-144, 2004.
[14]. J. Hong, T. Dohi, M. Hashizume, K. Konishi and N. Hata, "An ultrasound-driven needle-insertion robot for percutaneous cholecystostomy," Phys. Med. Biol., vol. 49, pp. 441, 2004.
[15]. M. H. Howard, R. C. Nelson, E. K. Paulson, M. A. Kliewer and D. H. Sheafor, "An Electronic Device for Needle Placement during Sonographically Guided Percutaneous Intervention," Radiology, vol. 218, pp. 905, 2001.
[16]. J. L. Hutter and J. Bechhoefer, "Calibration of atomic‐force microscope tips," Rev. Sci. Instrum., vol. 64, pp. 1868-1873, 2009.
[17]. K. G. Yan, T. Podder, Yan Yu, Tien-I Liu, C. W. S. Cheng and Wan Sing Ng, "Flexible Needle–Tissue Interaction Modeling With Depth-Varying Mean Parameter: Preliminary Study," IEEE Transactions on Biomedical Engineering, vol. 56, pp. 255-262, 2009.
[18]. H. Kataoka, T. Washio, M. Audette and K. Mizuhara, "A model for relations between needle deflection, force, and thickness on needle penetration," Medical Image Computing and Computer-Assisted Intervention–MICCAI , pp. 966-974, 2001.
[19]. J. Krücker, S. Xu, N. Glossop, A. Viswanathan, J. Borgert, H. Schulz and B. J. Wood, "Electromagnetic tracking for thermal ablation and biopsy guidance: clinical evaluation of spatial accuracy," Journal of Vascular and Interventional Radiology, vol. 18, pp. 1141-1150, 2007.
[20]. V. G. Mallapragada, N. Sarkar and T. K. Podder, "Robot assisted real-time tumor manipulation for breast biopsy," Proceedings of the 2008 IEEE International Conference on Robotics and Automation, pp. 2515-2520, 2008.
[21]. V. G. Mallapragada, N. Sarkar and T. K. Podder, "Robotic system for tumor manipulation and ultrasound image guidance during breast biopsy," 30th Annual International Conference of the IEEE EMBS, pp. 5589-5592, 2008.
[22]. D. Stoianovici, L. Whitcomb, J. Anderson, R. Taylor and L. Kavoussi, "A modular surgical robotic system for image guided percutaneous procedures," Medical Image Computing and Computer-Assisted Interventation—MICCAI’98, pp. 404-410, 1998.
[23]. S. H. Okazawa, R. Ebrahimi, J. Chuang, R. N. Rohling and S. E. Salcudean, "Methods for segmenting curved needles in ultrasound images," Med. Image Anal., vol. 10, pp. 330-342, 2006.
[24]. K. B. Reed, A. M. Okamura and N. J. Cowan, "Modeling and Control of Needles With Torsional Friction," IEEE Transactions on Biomedical Engineering, vol. 56, pp. 2905-2916, 2009.
[25]. C. Simone and A. M. Okamura, "Modeling of needle insertion forces for robot-assisted percutaneous therapy," Proceedings of the 2002 IEEE International Conference on Robotics and Automation, vol. 2, pp. 2085-2091, 2002.
[26]. P. U. Thainual, G. S. Fischer, I. Iordachita, S. Vikal and G. Fichtinger, "The perk station: Systems design for percutaneous intervention training suite," Proceedings of 2008 IEEE International Conference on Robotics and Biomimetics, pp. 1693-1697, 2009.
[27]. N. A. Wood, K. Shahrour, M. C. Ost and C. N. Riviere, "Needle steering system using duty-cycled rotation for percutaneous kidney access," 32nd Annual International Conference of the IEEE EMBS, pp. 5432-5435, 2010.
[28]. C. T. Yeo, T. Ungi, P. U-Thainual, A. Lasso, R. C. McGraw and G. Fichtinger, "The Effect of Augmented Reality Training on Percutaneous Needle Placement in Spinal Facet Joint Injections," IEEE Transactions on Biomedical Engineering, vol. 58, pp. 2031-2037, 2011.
[29]. B. Bussels, L. Goethals, M. Feron, D. Bielen, S. Dymarkowski, P. Suetens and K. Haustermans, "Respiration-induced movement of the upper abdominal organs: a pitfall for the three-dimensional conformal radiation treatment of pancreatic cancer," Radiotherapy and Oncology, vol. 68, pp. 69-74, 2003.
[30]. 廖英吟, "超音波影像定位", 碩士論文,中央大學 生醫工程研究所,2011.
[31]. 日本超音波醫學會 編;李嘉明, 李玉華 譯, “新超音波醫學1─醫用超音波的基礎”, 合記圖書出版社, pp.23-27, 2003.
指導教授 曾清秀(Ching-shiow Tseng) 審核日期 2012-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明