博碩士論文 963406601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.190.239.239
姓名 吳天輝(Dinh-Hieu Vu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以廢玻璃和天然孔洞材料製備濕控材料
(Preparation of humidity control materials from waste glass and natural porous materials)
相關論文
★ 半導體業化學機械研磨殘液及盛裝容器資源化再利用可行性評估★ 電子產業廢錫鉛銲材渣資源化操作條件探討
★ 台灣南部海域溢油動態資料庫-應用於海洋污染事故應變模擬分析★ 都市廢棄物固態發酵高溫產氫之研究
★ 以印刷電路板鍍銅水平製程探討晶膜現象衍生之銅層斷裂★ Thermite反應熔融處理都市垃圾焚化飛灰之研究
★ 焚化飛灰與下水污泥灰共熔之操作特性 與卜作嵐材料特性之研究★ 廢棄物衍生Thermite 熔融劑之研究
★ 廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制及重金屬移行之研究★ 廢棄物鋁熱反應熔融處理焚化飛灰-熔渣基本特性研究
★ 廢鑄砂及石材污泥取代水泥生料之研究★ 廢棄物衍生Thermite熔融劑處理焚化飛灰熔融物質回收之研究
★ 廢棄物衍生鋁熱熔融劑處理鉻污泥★ 廢棄物衍生鋁熱熔融劑處理不鏽鋼集塵灰
★ 濕式冶煉鉻污泥配置廢棄物衍生鋁熱熔融劑回收鉻金屬之研究★ 水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 陶瓷建材提供適當的孔隙大小與構造,而被發展成室內濕控材料。此種材料以吸、脫附室內水分來調控環境濕度變化,而其反應機制以凱文(Kelvin)公式探討孔隙大小和相對濕度之相互關係。
過去十幾年來,濕控材料以石灰砂漿、無定形白炭黑、煤粉與無機鹽石灰石、粘土砂石膏、生物複合材料、熱塑性輻射渣和沸石-水泥等製作而成。然而其產製成本高、具可燃性和耐久性差等缺點。另一種方法是以無機材料,如氯化鈣和矽膠製成,但這些材料對水的吸、脫附表現較差,或可能對人體健康有害。因此,發展低成本、能量效率高、耐久性強且安全的天然孔材做濕控材料,為值得研究之方向。
本研究探討以火山灰或風化火山灰和廢玻璃燒結以製備濕控材料的可行性。並評估該濕控材料之孔隙率、孔洞分布和濕氣脫附,做為建材之工程特性。結果顯示:混合30wt%的火山灰和70wt%廢玻哩,燒結8000C 、5 分鐘,可得到最佳之水分吸、脫附和工程性質。所製備之濕控材料可得到52.08%的孔隙率和163.73 m2/g的BET表面積,而其主要孔洞直徑分布於約9 nm,依據日常生活環境之實際濕度水準,該中孔範圍有利於濕氣縮合。該濕控材料總水分脫附量為0.047cm3/g。另外,結果顯示濕控材料之體密度1.34 g/cm3、緊縮度2.61%、燒結後點火損失4.64%、彎曲強度6.58 MPa,整體工程特性表現符合陶瓷建材商業需求。本研究建議以天然孔洞材料如火山灰(例如含量多之allophane)和廢玻璃,以適當之燒結條件製備濕控材料,能兼具經濟及環境利益。
最後,本研究依據凱文(Kelvin)公式,評估在水平衡狀態下之體積吸、脫附效益,結果顯示所評估之體績效益遠小於在平衡狀態下之體積脫附,建議為孔洞型態效益(頸縮結構)。
摘要(英) Ceramic constructional material, which provides proper pore size and structure, has been developed for the purpose of indoor air humidity control. Such materials control humidity by adsorption and desorption of indoor moisture with the variation of ambient humidity, a mechanism governed by the Kelvin equation relationship between pore size and relative humidity.
In the past decade the humidity control material (HCM) has been produced from raw material such as lime mortars, amorphous fumed silica, pulverized limestone with inorganic salts, clay–sand plaster, bio-composites, thermoplastics reinforced with pinups radiate sawdust, and zeolite-cement. The resultant HCMs, however, are costly due to production process, or flammable or, weak, and nondurable for construction use. In other cases, inorganic compounds such as calcium chloride and silica-gel have been used, but these materials exhibit poor water adsorption-desorption, or might be harmful to human health. Therefore, it is desirable to develop a low-cost, energy-efficient, durable, and safe HCM that incorporates natural porous materials.
This work investigated the feasibility of HCM by sintering a mixture of volcanic ash or weathered volcanic ash and waste glass. The porosity, pore size distribution, and moisture adsorption of the resultant HCMs were characterized, and their engineering properties for use as building material were evaluated as well. The results indicate that a mix design of 30wt% volcanic ash soil to 70wt% waste glass, sintered at 8000C for 5 minutes would yield a HCM of optimum performance both in moisture adsorption/desorption and engineering properties. The target HCM was found to have the porosity of 52.08%, with a BET surface area of 163.73 m2/g, and a major pore diameter distribution falling within a range around 9 nm, the mesopore range that facilitates the condensation of moisture in pores corresponding to the practical range of humidity levels in our living environment. This HCM showed a total amount of water adsorption of 0.047cm3/g. In addition, the resultant HCM showed the bulk density of 1.34 g/cm3, the shrinkage of 2.61%, the ignition of loss of 4.64% after sintering, and the bending strength of 6.58 MPa, representing all the engineering properties meeting the commercial requirements for building ceramics. The results of this study suggest that HCM can be prepared by sintering natural porous materials such as volcanic ash soil (i.e. rich in allophane) and waste glass with appropriate sintering conditions; and their application for humidity control material is both economical and environmentally beneficial.
Finally, based on the Kelvin equation, this study investigated the estimated effective adsorption volume and the volume adsorption water at equilibrium: the results indicate the estimated effective volume is much smaller than the adsorption volume at equilibrium; suggesting the effects of pore morphology (the bottle neck structure).
關鍵字(中) ★ 濕控材料
★ 燒結
★ 火山灰
★ 廢玻璃
關鍵字(英) ★ Humidity control material
★ Sintering
★ Volcanic ash
★ Waste glass
論文目次 摘要 I
ABSTRACT III
ACKNOWLEDGEMENTS V
TABLE OF CONTENTS VII
LIST OF FIGURES X
LIST OF TABLES XIII
EXPLANATION OF SYMBOLS XV
CHAPTER 1 - INTRODUCTION 1
CHAPTER 2 – LITERATURE REVIEW 4
2-1 Humidity Control Material review 4
2-1-1 The need of humidity control material 4
2-1-2 Raw material for making HCM 5
2-1-3 Production of HCM 13
2-1-3-2 The synthesis strategies of HCM 13
2-1-3-2 Production of HCM by sintering process 24
2-1-3-3 Conclusion 25
2-2 Moisture adsorption-desorption theory 26
2-2-1 The physical adsorption of moisture by mesoporous solids 26
2-2-2 The functional cluster group adsorption of porous material 28
2-2-3 The simultaneously existing of capillary condensation and clustering in porous materials 31
2-3 Raw Material Review 35
2-3-1 Waste Glass 35
2-3-2 Weathered volcanic ash soil (allophane) 43
2-3-3 Volcanic ash soil (Mordenite) 47
2-3-4 Conclusion 49
CHAPTER 3 – MATERIALS AND METHODS 52
3-1 Material preparation 52
3-1-1 Waste glass 52
3-1-2 Weathered volcanic ash (Allophane) 52
3-1-3 Volcanic ash soil (Mordenite) 53
3-1-4 Mixed design for preparation of green samples 54
3-2 Methods 55
3-2-1 Sintering process 55
3-2-2 Analysis 56
3-2-2-1 Engineering properties 56
3-2-2-2 Porous properties 61
3-2-2-3 Moisture adsorption-desorption performances 65
CHAPTER 4 – RESULTS AND DISCUSSION 69
4-1 Characteristics of raw materials 69
4-1-1 Chemical composition and XRD pattern of raw materials 69
4-1-2 Particle size distribution of raw materials 71
4-1-3 Porous and mechanical characteristics of raw materials 73
4-1-4 Analysis of heavy metals and TCLP test of raw materials 73
4-2 Characteristics of final products (HCM) 74
4-2-1 Porous characteristics of HCM 74
4-2-2 Humidity controlling characteristics of HCM 89
4-2-3 Mechanical characteristics of HCM 96
4-2-4 TCLP leaching concentrations of heavy metals of HCM 103
4-2-5 Conclusion 104
4-3 Sintering characteristics 105
4-3-1 Chemical solid-state reactions 107
4-3-2 Sintering with chemical reaction: Reaction sintering 112
4-3-3 Relationship between the porous and mechanical characteristics in HCM 117
4-3-4 Conclusion 122
4-4 The physical adsorption of moisture by HCM 123
4-4-1 Volume of adsorbed water measured vs relative humidity 123
4-4-2 Relation between estimated volume and volume of adsorbed water 127
CHAPTER 5 – CONCLUSIONS AND RECOMMENDATIONS 132
5-1 Conclusions 132
5-2 Recommendations 133
REFERENCES 135
LIST OF PUBLICATIONS 144
參考文獻 1. T. Horikawa, Y. Kitakaze, T. Sekida, T. Sekida, and M. Katoh, “Characteristics and humidity control capacity of activated carbon from bamboo”, Bioresource Technology, Vol. 101, pp. 3964-3969, 2010.
2. V. Vendange, Ph. Colomban, F. Larch, “Pore size and liquid impregnation of microporous aluminosilicate”, Microporous Materials, Vol. 5, pp. 389-400, 1996.
3. J. C. González, M. Molina-Sabio and F. Rodríguez-Reinoso, “Sepiolite-based adsorbents as humidity controller”, Applied Clay Science, Vol. 20, pp. 111-118, 2001.
4. X. Zhang, “Sintering Kinetics of Porous Ceramics from Natural Diatomite”, J. Am. Ceram. Soc, Vol. 88, pp. 1826–1830, 2005.
5. L. Montanaro, N. Bianchini, J.Ma. Rincon, M. Romero, “Sintering behaviour of pressed red mud wastes from zinc hydrometallurgy”, Ceramics International, Vol. 27, pp. 29-37, 2001.
6. G.A. Khater, “The use of Saudi slag for the production of glass-ceramic materials”, Ceramics International, Vol. 28, pp. 59–67, 2002.
7. D-H. Vu, K-S. Wang, B. H. Bac, “Humidity control porous ceramics prepared from waste and porous materials”, Materials Letters, Vol. 65, pp. 940–943, 2011.
8. F. Akhtar, Petr O. Vasiliev, and L. Bergstrom, “Hierarchically Porous Ceramics from Diatomite Powders by Pulsel Curent Processing”, J. Am. Ceram. Soc, Vol. 92, pp. 338-343, 2009.
9. F. Caturla, M. Molina-Sabio and F. Rodriguez-Reinoso, “Adsorption–desorption of water vapor by natural and heat-treated sepiolite in ambient air”, Appl. Clay Sci, Vol. 15, pp. 367–380, 1999.
10. F. Hiroshi, Y. Sshigeru, K. Kazuko. “Study on a New Humidity Controlling Material Porous Soil "Allophane"-Design of Humidity Controlling Material-“.Resources Processing, Vol. 52, pp. 128-135, 2005.
11. T. Kimura, M. Suzuki, M. Maeda and S. Tomura, “Water adsorption behavior of ordered mesoporous silicas modified with an organosilane composed of hydrophobic alkyl chain and hydrophilic polyethylene oxide groups”, Micropor. Mesopor. Mater, Vol. 95, pp. 213–219, 2006.
12. R, Szostak. “Handbook of Molecular Sieves”. New York : Van Norstrand Reinhold, 2003.
13. SI. Wada, K. Wada. “Density and structure of allophane”. Clay Miner, Vol. 12, pp. 289-298, 1977.
14. C. Shi, K. Zheng. “A review on the use of waste glasses in the production of cement and concrete” Resources, Conservation and Recycling , Vol. 52, pp. 234-247, 2007.
15. Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity (2ed). s.l. : AP, 1982.
16. http://www.epa.gov/iaq/schooldesign/moisturecontrol.html. [Online]
17. http://en.wikipedia.org/wiki/Humidity. [Online]
18. A. El-Turki, R. J. Ball, S. Holmesb, W. J. Allenc and G. C. Allena. “Environmental cycling and laboratory testing to evaluate the significance of moisture control for lime mortars”. Construction and Building Materials, Vol. 24, pp. 1392–1397, 2010.
19. F. Ohashi, M. Maeda, K. Inukai, M. Suzuki, S. Tomura. “Study on intelligent humidity control materials: Water vapor adsorption properties of mesostructured silica derived from amorphous fumed silica”. Journal of Material Science, Vol. 34, pp. 1341 – 1346, 1999.
20. T. Nakazato, F. Yano, K. Ohyama, T. Uchibori, N. Nakagawa. “Moisture absorption characteristics of porous calcium oxide powders produced by calcination of pulveriezed limestone with inorganic salts using a powder-particle fluidized bed”. Journal of the Ceramic Society of Japan, Vol. 115, pp. 443-446, 2007.
21. M. Maddison, T. Mauring, K. Kirsimae, U. Mander. “The humidity buffer capacity of clay–sand plaster filled with phytomass from treatment wetlands”. Building and Environment, Vol. 44, pp. 1864–1868, 2009.
22. K. Goto, S. Terao. “Structures and humidity controlling performaces of zeolite-cement hardened body”. Journal of the Ceramic Society of Japan, Vol. 113, pp. 736-742, 2005.
23. S. Inagaki, Y. Fukushima. “Adsorption of water vapor and hydrophobicity of ordered mesoporous silica, FSM-16,”. Micropor. Mesopor. Mater, Vol. 21, pp. 667–672, 1998.
24. F. Hiroshi, Y. Shigeru, K. Kazuko. “Study on a New Humidity Controlling Material Porous Soil "Allophane"-Design of Humidity Controlling Material-“. Resources Processing, Vol. 52, pp. 128-135, 2005.
25. D.D. Do and H.D. Do. “A model for water adsorption in activated carbon”. Carbon, Vol. 38, pp. 767-773, 2000.
26. D.D. Do, S. Junpirom, H.D. Do. “A new adsorption–desorption model for water adsorption”. Carbon, Vol. 47, pp. 1466 –1473, 2009.
27. G. Marban, A.B. Fuertes. “Co-adsorption of n-butane/water vapour mixtures on activated carbon fibre-based monoliths”. Carbon, Vol. 42, pp. 71–81, 2004.
28. J Mahle. “A n adsorption equilibrium model for Type 5 isotherms”. Carbon, Vol. 40, pp. 2753–2759, 2002.
29. S. Lagorsse, M.C. Campo, F.D. Magalhaes, A. Mendes. “Water adsorption on carbon molecular sieve membranes: Experimental data and isotherm model”. Carbon, Vol. 43, pp. 2769-2779, 2005.
30. T. Zimny, G. Finqueneisel, L. Cossarutto, J.V. Weber. “Water vapor adsorption on activated carbon preadsorbed with naphtalene”. Journal of Colloid and Interface Science, Vol. 285, pp. 56–60, 2005.
31. P. Kim, S. Agnihotri. “Application of water–activated carbon isotherm models to water adsorption isotherms of single-walled carbon nanotubes”. Journal of Colloid and Interface Science, Vol. 325, pp. 64-73, 2008.
32. T. Uma. “Structural and proton conductivity study of P2O5-TiO2-SiO2 glasses”. Journal of the European Ceramic Society, pp. 2365–2372, 2006.
33. V. Valtchev, M. Smaihi, A. C. Faust and L. Vidal. “Equisetum arvense Templating of Zeolite Beta Macrostructures with Hierarchical Porosity”. Chem. Mater, Vol. 16, pp. 1350-1355, 2004.
34. L. Q. Wang, Y. Shin, W. D. Samuels, G. J. Exarhos, I. L. Moudrakovski, V. V. Terskikh and J. A. Ripmeester. “Magnetic Resonance Studies of Hierarchically Ordered Replicas of Wood Cellular Structures Prepared by Surfactant-Mediated Mineralization”, J. Phys. Chem. B, Vol. 107, pp. 13793-13802, 2003.
35. Z. Y. Yuan, T. Z. Ren, A. Vantomme and B. L. Su. “Insights into hierarchically meso–macroporous structured materials”, Chem. Mater., Vol. 16, pp. 5096-. 2004.
36. M. Oida, H. Maenami, H. Shin, H. Kuno, H. Ishida. “Hydrothermal solidification of inorganic waste materials”. Tokyo, Japan, pp. 418 – 421, 2001.
37. H-S. Yang, H-J. Kim, H-J. Park, B-J. Lee, T-S. Hwang. “Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites”. Composite Structures, Vol. 72, pp. 429–437, 2006.
38. M. Shimada, T. Iida, K. Kawarada, T. Okayama, M. Fushitani. “Pore structure and adsorption properties of carbonized material prepared from waste paper”. J Mater Cycles Waste Manag, Vol. 3, pp. 135-143, 2001.
39. K.B. Adhikary, S. Pang, M.P. Staiger. “Long-term moisture absorption and thickness swelling behaviour of recycled thermoplastics reinforced with Pinus radiata sawdust”. Chemical Engineering Journal, Vol. 142, pp. 190-198, 2008.
40. T. Padfield, “The role of adsorbent building materials in moderating changes of relative humidity”. Department of Structural Engineering and Materials, The Technical University of Denmark. 1998. Dissertation.
41. H. Yang, Z. Peng, Y. Zhou, F. Zhao, J. Zhang, X. Cao and Z. Hu. “Preparation and performances of a novel intelligent humidity control composite material”. Energy and Buildings, Vol. 43, pp. 386-392, 2011.
42. M. Maeda, M. Suzuki, F. Ohashi, K. Inukai, S. Tomura, Y. Shibasaki, K. Aikawa and K. Okada. “Water vapor adsorption of porous materials of AlOOH–Al2O3”. J. Ceram. Soc. Jpn, Vol. 110, pp. 118–120, 2002.
43. P. Colombo, C. Vakifahmetoglu, S. Costacurta. “Fabrication of ceramic components with hierarchical porosity”. J. Mater. Sci. Vol. 45, pp. 5425-5455, 2010.
44. Z-Y. Yuan and B.-L. Su, “Insights into hierarchically meso-macroporous structured materials”. J. Mater. Chem., Vol. 16, pp. 663-677, 2006.
45. P. Yang, et al. “Hierarchically Ordered Oxides”. Science, Vol. 282, p. 2244, 1998.
46. B. T. Holland, L. Abrams, A. Stein. “Dual Templating of Macroporous Silicates with Zeolitic Microporous Frameworks”. J. Am. Chem. Soc., Vol. 121, pp. 4308-4309, 1999.
47. M. Antonietti, B. Berton, C. Göltner, H.-P. Hentze. “Synthesis of Mesoporous Silica with Large Pores and Bimodal Pore Size Distribution by Templating of Polymer Latices”. Adv. Mater., Vol. 10, pp. 154-159, 1998.
48. G. Gundiah, “Macroporous silica–alumina composites with mesoporous walls”. Bull. Mater. Sci., Vol. 24, pp. 211–214, 2001.
49. S. Vaudreuil, M. Bousmina, S. Kaliaguine, L. Bonneviot. “Synthesis of Macrostructured Silica by Sedimentation±Aggregation”. Adv. Mater., Vol. 13, p. 1310, 2001.
50. A. Imhof & D. J. Pine, “Orderedmacroporous materials byemulsion templating”. Nature, Vol. 389, pp. 948-951, 1997.
51. T. Sen, “Meso-cellular silica foams, macro-cellular silica foams and mesoporous solids: a study of emulsion-mediated synthesis”. Microporous and Mesoporous Materials, Vol. 78, pp. 255–263, 2005.
52. H. F. Zhang, G. C. Hardy, M. J. Rosseinsky and A. I. Cooper. “Uniform emulsion-templated silica beads with high pore volume and hierarchical porosity”, Adv. Mater., Vol. 15, pp. 78-81, 2003.
53. R. A. Caruso and J. H. Schattka, “Cellulose Acetate Templates for Porous Inorganic Network Fabrication”, Adv. Mater., Vol. 12, pp. 1921-1923, 2000.
54. R. A. Caruso and M. Antonietti, “Silica films with bimodal pore structure prepared by using membranes as templates and amphiphiles as porogens”, Adv. Funct. Mater., Vol. 12, pp. 307-311, 2002.
55. F. C. Meldrum and R. Seshadri, “Porous gold structures through templating by echinoid skeletal plates”, Chem. Commun., pp. 29-30, 2000.
56. S. R. Hall, H. Bolger and S. Mann. “Morphosynthesis of complex inorganic forms using pollen grain templates” Chem. Commun, Vol. 22, pp. 2784-2786, 2003.
57. Y. Shin, L. Q. Wang, J. H. Chang, W. D. Samuels and G. J. Exarhos. Stud. Surf. Sci. Catal., Vol. 146, p. 447, 2003.
58. D. Zhao, P. Yang, B. F. Chmelka and G. D. Stucky. “Multiphase Assembly of Mesoporous-Macroporous Membranes” Chem. Mater., Vol. 11, pp. 1174-1178, 1999.
59. H. Nishihara, S. R. Mukai, D. Yamashita and H. Tamon. “Ordered Macroporous Silica by Ice Templating” Chem. Mater., Vol. 17, pp. 683-689, 2005.
60. K. Nakanishi, “Pore Structure Control of Silica Gels Based on Phase Separation”. J. Porous Mater., Vol. 4, pp. 67-112, 1997.
61. Y. Sato, K. Nakanishi, K. Hirao, H. Jinnai, M. Shibayama, Y. B. Melnichenko, G. D. Wignall. “Formation of ordered macropores and templated nanopores in silica sol–gel system incorporated with EO–PO–EO triblock copolymer” Colloids and Surfaces A, Vol. 187, pp. 117–122, 2001.
62. K. Nakanishi, Y. Sato, Y. Ruyat and K. Hirao, “Supramolecular Templating of Mesopores in Phase-Separating Silica Sol-Gels Incorporated with Cationic Surfactant” J. Sol-Gel Sci. Technol., Vol. 26, pp. 567–570, 2003.
63. S. Murai, K. Fujita, K. Nakanishi and K. Hirao. “Morphology Control of Phase-Separation-Induced Alumina-Silica Macroporous Gels for Rare-Earth-Doped Scattering Media” J. Phys. Chem. B, Vol. 108, pp. 16670-16676, 2004.
64. R. Takahashi, S. Sato, T. Sodesawa, K. Suzuki, M. Tafu, K. Nakanishi and N. Soga. “Phase Separation in Sol–Gel Process of Alkoxide-Derived Silica–Zirconia in the Presence of Polyethylene Oxide” J. Am. Ceram. Soc., Vol. 84, pp. 1968-1976, 2001.
65. Z. Y. Yuan, A. Vantomme, A. Leonard and B. L. Su. Chem. Commun., pp. 1558-1559, 2003.
66. W. Deng, M. W. Toepke and B. H. Shanks. “Surfactant-assisted synthesis of alumina with hierarchical nanopores” Adv. Funct. Mater., Vol. 13, pp. 61-65, 2003.
67. T. Z. Ren, Z. Y. Yuan and B. L. Su. “Microwave-Assisted Preparation of Hierarchical Mesoporous-Macroporous Boehmite AlOOH and ç-Al2O3 ” Langmuir, Vol. 20, pp. 1531-1534, 2004.
68. A. Leonard, J. L. Blin and B. L. Su. “One-pot surfactant assisted synthesis of aluminosilicate macrochannels with tunable micro- or mesoporous wall structure” Chem. Commun., pp. 2568-2569, 2003.
69. A. Corma, “From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis”. Chem. Rev., Vol. 97, p. 2373−2419, 1997.
70. A. Leonard, B. L. Su. “A novel and template-free method for the spontaneous formation of aluminosilicate macro-channels with mesoporous walls” Chem. Commun., pp. 1674-1675, 2004.
71. Lebeau B, Fowler CE, Mann S, Farcet C, Charleux B, Sanchez C. “Synthesis of hierarchically ordered dye-functionalised mesoporous silica with macroporous architecture by dual templating” J. Mater. Chem., Vol. 10, pp. 2105-2108, 2000.
72. Oh CG, Baek Y, Ihm SK. “Synthesis of Skeletal-structured biporous silicate powders through microcolloidal crystal templating” Adv. Mater., Vol. 17, pp. 270-273, 2005.
73. Rhodes KH, Davis SA, Caruso F, Zhang B, Mann S. “Hierarchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths Using Core-Shell Building Blocks” Chem Mater, Vol. 12, pp. 2832-2834, 2000.
74. Holland BT, Blanford CF, Do T, Stein A. “Synthesis of Highly Ordered, Three-Dimensional, Macroporous Structures of Amorphous or Crystalline Inorganic Oxides, Phosphates, and Hybrid Composites” Chem Mater, Vol. 11, pp. 795-805, 1999.
75. J-P Dacquin, Dhainaut J, Duprez D, Royer S, Lee AF, Wilson K. “An Efficient Route to Highly Organized, Tunable Macroporous-Mesoporous Alumina” J Am Chem Soc, Vol. 131, pp. 12896-12897, 2009.
76. Y. Kim, C. Kim, J. Yi. “Synthesis of tailored porous alumina with a bimodal pore size distribution” Materials Research Bulletin, Vol. 39, pp. 2103–2112, 2004.
77. T. Sen, G. J. T. Tiddy, J. L. Casci, and M. W. Anderson. “Synthesis and Characterization of Hierarchically Ordered Porous Silica Materials”. Chem. Mater., Vol. 16, pp. 2044-2054, 2004.
78. Walsh D, Kulak A, Aoki K, Ikoma T, Tanaka J, Mann S. Angew Chem Int Ed, Vol. 43, pp. 6691-6695, 2004.
79. Madhusoodana CD, Das RN, Kameshima Y, Okada K. “Preparation of ZSM-5 Zeolite Honeycomb Monoliths Using Microporous Silica Obtained from Metakaolinite” J Porous Mater, Vol. 12, pp. 273–280, 2005.
80. Smatt J-H, Spliethoff B, Rosenholm JB, Linde´n M. “Versatile Double-Templating Synthesis Route to Silica Monoliths Exhibiting a Multimodal Hierarchical Porosity” Chem Commun, Vol. 15, pp. 2188–2189, 2003
81. Lee YJ, Lee JS, Park YS, Yoon KB. “Synthesis of Large Monolithic Zeolite Foams with Variable Macropore Architectures” Adv Mater, Vol. 13, pp. 1259-1263, 2001.
82. Alvarez S, Fuertes AB. “Synthesis of macro/mesoporous silica and carbon monoliths by using a commercial polyurethane foam as sacrificial template”, Mater Lett, Vol. 61, pp. 2378 – 2381, 2007.
83. Li L-L, Duan W-T, Yuan Q, Li Z-X, Duan H-H, Yan C-H. “Hierarchical c-Al2O3 monoliths with highly ordered 2D hexagonal mesopores in macroporous walls”, Chem Commun, pp. 6174–6176, 2009.
84. Shi Z-G, Xu L-Y, Feng Y-Q. “A new template for the synthesis of porous inorganic oxide monoliths”, J Non-Cryst Solids, Vol. 352, pp. 4003–4007, 2006.
85. Xu L-Y, Shi Z-G, Feng Y-Q. “A facile route to a silica monolith with ordered mesopores and tunable through pores by using hydrophilic urea formaldehyde resin as a template”, Vol. 98, pp. 303–308, 2007.
86. B. Zhang, Sean A. Davis, and Stephen Mann. “Starch Gel Templating of Spongelike Macroporous Silicalite Monoliths and Mesoporous Films”. Chem. Mater., Vol. 14, pp. 1369-1375, 2002.
87. M. Iwasaki, S. A. Davis and S. Mann. “Spongelike Macroporous TiO2 Monoliths Prepared from Starch Gel Template”, J. Sol-Gel Sci. Technol., Vol. 32, pp. 99-105, 2004.
88. F. Carn, A. Colin, M. F. Achard, H. Deleuze, C. Sanchez and R. Backov. “Anatase and rutile TiO2 macrocellular foams: Air-liquid foaming sol-gel process towards controlling cell sizes, morphologies, and topologies”, Adv. Mater., Vol. 17, pp. 62-66, 2005.
89. Konishi J, Fujita K, Nakanishi K, Hirao K. “Monolithic TiO2 with Controlled Multiscale Porosity via a Template-Free Sol-Gel Process Accompanied by Phase Separation”, Chem Mater, Vol. 18, pp. 6069-6074, 2006.
90. Konishi J, Fujita K, Oiwa S, Nakanishi K, Hirao K. “Crystalline ZrO2 Monoliths with Well-Defined Macropores and Mesostructured Skeletons Prepared by Combining the Alkoxy-Derived Sol–Gel Process Accompanied by Phase Separation and the Solvothermal Process”, Chem Mater, Vol. 20, pp. 2165–2173, 2008.
91. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N. “Octadecylsilylated Porous Silica Rods as Separation Media for Reversed-Phase Liquid Chromatography”, Anal Chem, Vol. 68, pp. 3498-3501, 1996.
92. J. H. Smatt, S. Schunk and M. Linden. “Versatile Double-Templating Synthesis Route to Silica Monoliths Exhibiting a Multimodal Hierarchical Porosity”, Chem. Mater., Vol. 15, pp. 2354-2361, 2003.
93. Husing N, Raab C, Torma V, Roig A, Peterlik H. “Periodically Mesostructured Silica Monoliths from Diol-Modified Silanes”, Chem Mater, Vol. 15, pp. 2690-2692, 2003.
94. Amatani T, Nakanishi K, Hirao K, Kodaira T. “Monolithic Periodic Mesoporous Silica with Well-Defined macropores”, Chem Mater, Vol. 17, pp. 2114-2119, 2005.
95. Wang H, Huang L, Wang Z, Mitra A, Yan Y. Chem. Commun., pp. 1364–1365, 2001.
96. Vasiliev PO, Shen Z, Hodgkins RP, Bergstrom L. “Meso/Macroporous, Mechanically Stable Silica Monoliths of Complex Shape by Controlled Fusion of Mesoporous Spherical Particles”, Chem. Mater., Vol. 18, pp. 4933-4938, 2006.
97. M. El-Sabaawi. “Moisture Isotherms of Hygroscopic Porous Solids”, Ind. Eng. Chem. Fundamen, pp. 321-326, 1977.
98. M. Neitsch, W. Heschel, M. Suckow. “Water vapor adsorption by activated carbon: a modification to the isotherm model of Do and Do. Letters to the Editor/ Carbon, Vol. 39, pp. 1421-1446, 2001.
99. T. Ohba, H. Kanoh, and K. Kaneko. “Water Cluster Growth in Hydrophobic Solid Nanospaces”. Chem. Eur. J., Vol. 11, pp. 4890 – 4894, 2005.
100. S. Sircar, “Capillary condensation theory for adsorption of vapours on mesoporous solids”. Surface science, Vol. 164, pp. 393-402, 1985.
101. L. Cossarutto, T. Zimny, J. Kaczmarczyk, T. Siemieniewska, J. Bimer, J.V. Webera, “Transport and sorption of water vapour in activated carbons”. Carbon, Vol. 39, pp. 2339-2346, 2001.
102. S. Furmaniak, P.A. Gauden, A.P. Terzyk, G. Rychlicki, R.P. Wesołowski, P.Kowalczyk. “Heterogeneous Do–Do model of water adsorption on carbons”, Journal of Colloid and Interface Science, Vol. 290, pp. 1-13, 2005.
103. T. Horikawa, T. Sekida, J. Hayashi, M. Katoh, Duong D. Do. “A new adsorption–desorption model for water adsorption in porous carbons”. Carbon, Vol. 49, pp. 416-424, 2010.
104. S-B. Park, B-C. Lee. “Studies on expansion properties in mortar containing waste glass and fibers”. Cement and Concrete Research, Vol. 34, pp. 1145–1152, 2004.
105. M. Sivasundaram, “Glass ceramics from pulp and paper waste ash”. Montreal, Canada (Master Thesis) : McGill University, 2000.
106. http://saferenvironment.wordpress.com/2009/06/04/waste-glass-recycling-%E2%80%93-an-effective-way-to-save-energy-and-environment/. [Online]
107. H. Maeda, E. H. Ishida. “Water vapor adsorption and desorption of mesoporous materials derived from metakaolinite by hydrothermal treatment”. Ceramics International, Vol. 35, pp. 987-990, 2008.
108. G.G. Lindner, H. Nakazawa, S. Hayashi. “Hollow nanospheres, allophanes ‘All-organic’ synthesis and characterization”. Microporous and Mesoporous Materials, Vol. 21, pp. 381-386, 1998.
109. T. Woignier, G. Pochet, H. Doumenc, P. Dieudonn´e, L. Duffours. “Allophane: a natural gel in volcanic soils with interesting environmental properties”. J Sol-Gel Sci Techn, Vol. 41, pp. 25–30, 2007.
110. T. Woignier. “Preservation of the allophanic soils structure by supercritical drying”. Microporous and Mesoporous Materials, pp. 370-375, 2008.
111. Y. Onodera, “Bactericidal allophanic materials prepared from allophane soil I. Preparation and characterization of silverrphosphorus–silverloaded allophanic specimens”. s.l. : Applied Clay Science, Vol. 18, pp. 123–134, 2001.
112. G.G. Lindner, “Hollow nanospheres, allophanes ’’All-organic’’ synthesis and characterization. s.l. : Microporous and Mesoporous Materials”, Vol. 21, pp. 381-386, 1998.
113. H. Fukumizu and S. Yokoyama, “Study on a New Humidity Controlling Material Porous Soil “Allophane” Evaluation of Humidity Controlling Performance in Practical Houses”. Journal of the Ceramic Society of Japan, pp. 59–64, 2005.
114. K. Okada. “Water-retention properties of porous ceramics prepared from mixtures of allophane and vermiculite for materials to counteract heat island effects”. Ceramics International, Vol. 34, pp. 345–350, 2008.
115. K. Hattori, H. Fukumizu, M. Nogami, “Study on a New Humidity Controlling Material Porous Soil “Allophane” Design of Humidity Controlling Performance by Numerical Simulation”. Journal of the Ceramic Society of Japan, pp. 58–62, 2006.
116. Ch. Baerlocher, L.B. McCusker, D.H. Olson. “Atlas of Zeoolite Framework Types”. s.l. : Elsevier, 2007.
117. Y-T. Ye,矽酸鹽類材料之調濕性能探討,碩士論文,元智大學化學工程與材料科學學系,. 2007.
118. Y-P. Wang,無機材料的製備與性能研究,碩士論文,武漢理工大學材料學院. 2007.
119. ASTM D7348 - 08 Standard Test Methods for Loss on Ignition (LOI) of Solid Combustion Residues.
120. H-C. Yi, “The Investigation of Capillary Wick Structure Fabricated by Sintering Method”. Department of Materials Engineering, Tatung University. s.l. : Master Thesis, 2004.
121. ASTM C20 - 00(2010) Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water.
122. ASTM C1674 - 08 Standard Test Method for Flexural Strength of Advanced Ceramics with Engineered Porosity (Honeycomb Cellular Channels) at Ambient Temperatures.
123. http://en.wikipedia.org/wiki/Flexural_strength. [Online]
124. M. S. Rahman, “Utilizing mixed surfactants for simultaneous pore templating and active site formation in metal oxides” College of Engineering, University of Kentucky. s.l. : Dissertation, 2009.
125. S. Brunauer, P. H. Emmett, Edward Teller. “Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc., Vol. 60, pp. 309-319, 1938.
126. E. P. Barrett, “The Determination of Pore Volume and Area Distributions in Porous Substances. I.Computations from Nitrogen Isotherms”. Journal of the American Chemical Society, Vol. 73, pp. 373-380, 1951.
127. ASTM C1498-01. Standard Test Method for Hygroscopic Sorption Isotherms of Building Materials.
128. S. Airaksinen, “Role of Excipients in Moisture Sorption and Physical Stability of Solid Pharmaceutical Formulations”. Faculty of Pharmacy of the University of Helsinki. s.l. : Dissertation, 2005.
129. R. L. Parfitt, “Identification and structure of two types of allophane from volcanic ash soils and tephra” . Clays and Clay Minerals, pp. 328-334, 1980.
130. Suk-Joong L. Kang, “Sintering - Densification, Grain Growth, and Microstructure”. Oxford, UK : Elsevier Butterworth-Heinemann, 2005.
131. K. Okada, Y. Saito, M. Hiroki AND T. Tomita, “Water Vapor Sorption on Mesoporous Gamma-Alumina Prepared by the Selective Leaching Method”. Journal of Porous Materials, Vol. 4, pp. 253–260, 1997.
132. I.A.Rahman, “Effect of the drying techniques on the morphology of silica nanoparticles synthesized via sol–gel process”. Ceramics International, pp. 2059–2066, 2008.
133. D. Chakravarty, “High strength porous alumina by spark plasma sintering”. Journal of the European Ceramic Society, pp. 1361–1369, 2009.
134. S. Bertrand, “Processing, microstructure and mechanical strength of reaction-bonded Al2O3 ceramics”. Ceramics International, pp. 735–744, 2003.
135. K. Lin, “Properties of b-Ca3(PO4)2 bioceramics prepared using nano-size powders”. Ceramics International, pp. 979–985, 2007.
136. S. Liu, “Preparation of porous aluminium oxide (Al2O3) hollow fibre membranes by a combined phase-inversion and sintering method”. Ceramics International, pp. 875–881, 2003.
137. L. Barbieri, “Bulk and sintered glass-ceramics by recycling municipal incinerator bottom ash”. Journal of the European Ceramic Society, pp. 1637-1643, 2000.
138. F.F. Lange, “Sinterability of Agglomerated Powers”. Journal of the American Ceramic Society, pp. 83-89, 1984.
139. Rahaman. “Effect of green density on densification and creep during sintering” Journal of the American Ceramic Society, pp. 514-519, 1991.
140. E. Benavidez, “Densification of ashes from a thermal power plant”. Ceramics International, pp. 61-68, 2003.
141. D.U. Tulyaganov, “Development of glass-ceramics by sintering and crystallization of fine powders of calcium-magnesium-aluminosilicate glass”. Ceramics International, pp. 515–520, 2002.
142. A. Das, “Influence of process parameters on the formation of Silicalite-1 zeolite particles”. Ceramics International, pp. 1799–1806, 2009.
143. H. Darweesh. “Building materials from siliceous clay and low grade dolomite rocks”. Ceramics Internationa, pp. 45-50, 2001.
144. J.M. Rivas Mercury, “Synthesis of CaAl2O4 from powders: Particle size effect”. Journal of the European Ceramic Society, pp. 3269–3279, 2005.
145. W-S. Hong and L. C. De. Jonghe, “Reaction Sintering of ZnO-Al2O3”. J. Am. Ceram. Soc., Vol. 78, pp. 3217-3224, 1995.
146. S. Yangyung and R. J. Brook, “Preparation of Zirconia-Toughened Ceramic by reaction sintering”. Sci. Sintering, Vol. 17, pp. 35-47, 1985.
147. M.N. Rahaman. “Ceramic Processing and Sintering, second edition”. New York : Marcel Dekker, 2006.
148. H. Schmalzried, Solid State Reactions: 2nd ed. Weinheim, Germany : Verlag Chemie, 1981.
149. J. Zhao and M.P. Harmer. “Effect of pore distribution on microstructure development: I. Matrix pores”. J. Am. Ceram. Soc., Vol. 71, pp. 113-120, 1988.
150. J. Zhao and M. Harmer. “Effect of pore distribution on microstructure development: II. First and second generations”. J. Am. Ceram. Soc., Vol. 71, pp. 530-539, 1988.
151. B.R. Patterson, J.A. Griffin. “Effect of particle size distribution on sintering of tungsten”. Mod. Dev. Powd. Metall., Vol. 15, p. 279, 1984.
152. B.R. Patterson, L.A. Benson. “The effect of powder size distribution on sintering”. Prog. Powd. Metall., Vol. 39, p. 215, 1983.
153. K-L. Lin, “Use of thin film transistor liquid crystal display (TFT-LCD) waste glass in the production of ceramic tiles”. Journal of Hazardous Materials, Vol. 148, pp. 91–97, 2007.
指導教授 王鯤生(Kuen-Sheng Wang) 審核日期 2012-1-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明