博碩士論文 983206020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:151 、訪客IP:3.144.143.31
姓名 吳瑋羚(Woei-ling Wu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 奈米碳管在鄰苯二甲酸酯類溶液與腐植酸溶液中之分散與絮凝
(Stability of carbon nanotubes in phthalate esters and humic acid solutions)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 奈米碳管在環境中之流佈,會受到自然水體中存在的天然與人為排放之有機汙染物質,以及水體中水質條件的改變,影響其表面特性與傳輸宿命。本研究選用HNO3 與KOH 對單壁與多壁奈米碳管(A-SWCNT、A-MWCNT)進行改質,探討其在鄰苯二甲酸酯類(phthalate ester, PAEs) (鄰苯二甲酸二甲酯(DMP)、鄰苯二甲酸二乙酯(DEP)、鄰苯二甲酸二丁酯(DnBP))與腐植酸(humic acid, HA)中的分散與絮凝現象。經由定性分析結果顯示,奈米碳管經改質後會使碳管末端產生開口與管壁多處缺陷,增加其比表面積、孔洞體積、及改變碳管之結構完整性,其總表面積大小比較為H-SWCNT>A-SWCNT>K-MWCNT>H-MWCNT>A-MWCNT,改質亦會引入羧基、羥基、羰基等含氧官能基,使碳管表面帶負電位且增加分散穩定作用。
奈米碳管在PAEs 與HA 中之穩定性主要受產生靜電穩定與空間位阻影響,並受到PAEs 碳鏈長度、分子量、疏水性及吸附量影響。原始奈米碳管隨著吸附PAEs 與HA 濃度升高,碳管懸浮液濃度升高。但當吸附質為高濃度時,又可能產生多層吸附及分子間吸引等現象導致凝絮,使碳管沉澱而分散性降低。利用酸鹼溶液改質之奈米碳管,多壁奈米碳管由於其多層結構,以及改質後造成破壞程度與長短不一,因此難以控制其分散性。而單壁奈米碳管經酸氧化後分散性不佳,但由於其單層管壁結構,與吸附質濃度之相關性較為確定。水質參數亦會影響碳管之懸浮穩定性,當pH為3 時, A-SWCNT 與H-SWCNT 在DEP 溶液中之溶解度極低。當pH=6與pH=9 時,A-SWCNT 在DEP 溶液中之溶解度差異不大,而H-SWCNT表面之含氧官能基會受到pH 上升而增加其解離,並增加負電荷增強靜電斥力作用,因此其在DEP 中之溶解度隨pH 上升而升高。增加離子強度會
導致碳管產生電雙層壓縮作用,減少碳管表面之帶電,使得A-SWCNT 與H-SWCNT 之溶解度均降低。
摘要(英) Stability of pristine and modified (by HNO3 and KOH ) carbon nanotubes (CNTs)phthalate esters (PAEs) and humic acid (HA) solutions were investigated in this study.
It is shown that modification would damage the structure of CNTs and, thus, increasetheir surface area and pore volume. The surface area from the largest to the smallest
were H-SWCNTs> A-SWCNTs> K-MWCNTs> H-MWCNTs> A-MWCNTs,
modification would also introduce carboxyl, hydroxyl, carbonyl and otheroxygen-containing functional groups, which may lead to negative charged surface and enhance the solubility of CNTs.
It is found that the solubility of CNTs is mainly affected by the electrostatic and steric repulsions. The solubility of CNTs might be further affected by the carbon
chain length, molecular weight, hydrophobicity, and the concentration PAEs and HA.The solubility of the pristine CNTs were improved as the concentrations of PAEs and
HA increased. However, at high concentration of PAEs, the solubility of the CNTs decreased, which may due to the multi-layer adsorption or phase separation of PAEs.
The H-MWCNTs and K-MWCNTs had excellent solubility and concentration and chain length of PAEs have no significant effects. The solubility of H-SWCNTs was poor and was affected by the concentration of PAEs. The effects of pH and ionic strength of the solubility of CNTs in PAEs solution was investigated by dispersing A-SWCNTs and H-SWNCTs in DEP solution. It is found that both A-SWCNTs and
H-SWCNTs have very poor solubility at pH of 3. When the solution pH values were 6 and 9, the solubilities of H-SWCNTs increased and are similar. This may be resulted
from the dissociation of the oxygen-containing surface groups, which increase the negatively charge and the electrostatic repulsions between H-SWCNTs. The solubility
of H-SWCNTs in DEP solution was found to be decreased with increasing ionic strength, which may also be resulted from the double layer compression. In conclusion, the electrostatic repulsions played a more important role than the steric repulsion in the dispersion of CNTs in organic solution.
關鍵字(中) ★ 奈米碳管
★ 吸附
★ 空間位阻
★ 溶解度/分散性
關鍵字(英) ★ solubility
★ steric repulsion
★ adsorption
★ carbon nanotube
論文目次 圖目錄.....................................IV
表目錄....................................VII
第一章 前言 ............................... 1
1-1 研究緣起............................... 1
1-2 研究目的與內容 ........................ 3
1-3 研究流程............................... 4
第二章 文獻回顧 ........................... 5
2-1 奈米碳管............................... 5
2-1-1 奈米碳管的結構與特性 ................ 5
2-1-2 奈米碳管的純化與改質 ................ 7
2-1-3 化學氧化法對碳管分散穩定性影響 ..... 11
2-2 腐植酸及鄰苯二甲酸酯類 ............... 12
2-2-1 腐植酸(humic acids) ................ 12
2-2-2 鄰苯二甲酸酯類 ....................................... 14
2-2-3 鄰苯二甲酸酯類在環境中的分佈........ 15
2-2-4 奈米碳管對於鄰苯二甲酸酯類的吸附 ... 17
2-3 奈米碳管的分散穩定性理論 ............. 20
2-3-1 靜電穩定作用................... .... 22
2-3-2 空間位阻穩定作用.................... 25
2-3-3 架橋作用 ........................... 27
2-3-4 奈米碳管的吸附影響分散穩定性相關研究.28
第三章 實驗方法 ...........................34
3-1 實驗設備與材料 ....................... 34
3-1-1 實驗設備 ........................... 34
3-1-2 實驗材料 ........................... 38
3-2 實驗方法.............................. 41
3-2-1 奈米碳管之改質程序 ................. 41
3-2-2 腐植酸配製方法及檢量線 ............. 44
3-2-3 奈米碳管懸浮液濃度分析方法 ......... 45
3-2-4 奈米碳管的分散穩定性實驗 ........... 48
第四章 結果與討論......................... 51
4-1 奈米碳管氧化前後之特性分析 ........... 51
4-1-1 奈米碳管表面型態及孔隙分析 ......... 51
4-1-2 奈米碳管之純度分析 ................. 60
4-1-3 奈米碳管氧化前後之官能基鑑定 ....... 63
4-2 改質前後不同奈米碳管之懸浮穩定現象 ... 66
4-2-1 奈米碳管之懸浮穩定特性 ............. 66
4-2-2 奈米碳管之懸浮穩定性隨時間之變化.....68
4-3 吸附質分子大小對碳管穩定性影響 ..... 74
4-3-1 吸附質分子大小對原始碳管懸浮穩定性影響74
4-3-2 吸附質分子大小對改質後碳管懸浮穩定性
的影響 ........ 80
4-4 吸附質濃度對碳管穩定性影響 ......... 88
4-4-1 吸附質濃度對原始碳管懸浮穩定性的影響 88
4-4-2 吸附質濃度對改質後碳管懸浮穩定性的影
響 ................................. 90
4-4-3 奈米碳管穩定機制與多層吸附凝絮現象
之探討 ............................. 93
4-5 pH 對奈米碳管之懸浮穩定性影響 ...... 99
4-6 離子強度效應影響奈米碳管之懸浮穩定
性 ................................ 104
第五章 結論與建議........................ 107
5-1 結論 ................................ 107
5-2 建議 ................................ 109
參考文獻 .................................110
參考文獻 1. H. Hyung, J. D. Fortner, J. B. Hughes, and J. H. Kim, “Natural organic matter stabilizes carbon nanotubes in the aqueous phase”, Environmental Science and Technology, 41, 179–184 (2007)
2. O. Park, T. Jeevananda, N. H. Kim,S. Kim, and J. H. Lee, “Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites”, Scripta Materialia, 60, 551-554 (2009)
3. D. Lin , N. Liu , K. Yang , B. Xing , and F. Wu, “Different stabilities of multiwalled carbon nanotubes in fresh surface water samples ”, Environmental Pollution , 158, 1270–1274 (2010)
4. L. Jiang, L. Gao, and J. Sun, “Production of aqueous colloidal dispersions of carbon nanotubes”, Journal of Colloid and Interface Science, 260, 89-94 (2003)
5. O. Metarredona, H. Rhoads, Z. Li, H. Harwall, L. Balzano, and D. E. Resasco, “Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solutions of the Anionic Surfactant NaDDBS”, Journal of Chemical Physics B, 107, 13357-13367 (2007)
6. Y. Bai, D. Lin, F. Wu, Z. Wang , and B. Xing, “Adsorption of Triton X-series surfactants and its role in Stabilizing multi-walled carbon nanotube suspensions”, Chemosphere, 79, 362-367 (2010)
7. R. Rastogi, R. Kaushal, S. K. Tripathi, A. L. Sharma, I. Kaur, and L. M. Bharadwaj, “Comparative study of carbon nanotube dispersion using surfactants”, Journal of Colloid and Interface Science, 328, 421-428 (2008)
8. H. Hyung and J. H. Kim, “Natural organic matter (NOM) adsorption to multiwalled carbon nanotubes: effect of NOM characteristics and water quality parameters”, Environmental Science and Technology, 42, 4416-4421 (2008)
9. 維基百科http://zh.wikipedia.org/wiki/Wikipedia:%E9%A6%96%E9%A1%B5
10. 成會明,「奈米碳管」,五南圖書出版社,2004。
11. 化工產業技術知識網: http://www.chemtech.com.tw
12. 匡元生化科技 CBT Nano-scale Supplier carbon
nanotube http://www.cbt.com.tw/0300.html
13. 杜玉琴,「鄰苯二甲酸酯類和腐植酸在多壁奈米碳管上的吸附」,碩士論文,國立中央大學環境工程研究所,中壢,2011。
14. 曾俊豪,「利用新穎電漿技術改質奈米碳管以製備導電複合材料之研究」,博士論文,國立成功大學化學工程學系,臺南,2009。
15. F. H. Ko, C. Y. Lee, C. J. Ko, and T. C. Chu, “Purification of Multi-walled nanotubes through microwave heating of nitric acid in a closed vessel”, Carbon, 43, 727-733 (2005 )
16. A. R. Harutyunyan, B. K. Pradhan, J. Chang, G. Chen, and P. C. Eklund, “Purification of Single-Walled Carbon Nanotubes by Selective Microwavwe Heating of Catalyst Particles”, Carbon, 106, 8671-8675 (2002)
17. K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, and C. B. Huffman,“Purification of single-walled carbon nanotubes by ultrasonically assisted filtration”, Chemical Physics Letters, 282, 429-434 (1998)
18. L. S. K. Pang, J. D. Saxby, and S. P. Chatfield, “Thermogravimetric analysis of carbon nanotubes and Nanoparticles”, Journal of Physical Chemistry, 97, 6941-6942 (1993)
19. S. C. Tsang, P. J. Harris, and M. L. Green, “Thinning and opening of carbon nanotubes by oxidation using carbon dioxide”, Nature, 362, 520 (1993)
20. G. S. Duesberg, M. Burghard, J. Muster, G. Philipp, and S. Roth, “Seperation of carbon nanotube by size exclusion chromatograpgy”, Chemical Communication, 3, 435-436 (1998)
21. X. L. Xie, Y. W. Mai, and X. P. Zhou, “Dispersion and alignment of carbon nanotubes in polymer matrix:A review”, Materials Science and Engineering, 49, 89-112 (2005)
22. A. M. Shanmugharaj, J. H. Bae, K. Y. Lee, W. H. Noh, S. H. Lee, and S. H. Ryu, “Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites”, Composites Science and Technology, 67, 1813-1822 (2007)
23. J. J. Wang, G. P. Yin, J. Zhang, Z. B. Wang, and Y. Z. Gao, “High utilization platinum deposition on single-walled carbon nanotubes as catalysts for direct methanol fuel cell”, Electrochimica Acta, 52, 7042-7050 (2007)
24. 周貝倫,「純化程序對奈米碳管表面特性影響之研究」,碩士論文, 國立中央大學環境工程研究所,中壢,2006。
25. H. Hu, B. Zhao, M. E. Itkis, and R. C. Haddon, “Nitric acid purification of single-walled carbon nanotubes”, Journal of Physical Chemistry B, 107, 13838-13842 (2003).
26. I. D. Rosca, F. Watari, M. Uo, and T. Akasaka, “Oxidation of mutiwalled carbon nanotubes by nitric acid”, Carbon, 43, 3124-3131 (2005)
27. B. Xu, F. Wu, Y. Su, G. Cao, S. Chen, Z. Zhou, and Y. Yang, “Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC:Balance between porosity and conductivity”, Electrochimica Acta, 53, 7730-7735 (2008)
28. E. Raymundo-Piñero, P. Azaïs, T. Cacciauerra, D. Cazorla-Amorós, A. Linares-Solano, and F. Béguin, “KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization”, Carbon, 43, 786-795 (2005)
29. 余翊菱,「以多壁奈米碳管吸附水中雙酚A之特性研究」,碩士論文,國立中央大學環境工程研究所,中壢,2010。
30. B. Pan, and B. S. Xing, “Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes”, Environmental Science and Technology, 42, 9005-9013 (2008)
31. A. G. Osorio, I. C. L. Silveira, V. L. Bueno, and C. P. Bergmann,“H2SO4/HNO3/HCl-Functionalization and its effect on dispersion of carbon nanotubes in aqueous media”, Applied Surface Science, 255, 2485-2489 (2008)
32. F. J. Stevenson, Humus Chemistry: Genesis, Composition, Reactions,John Wiley & Sons, New York (1994)
33. 盧重興,「奈米碳管吸附水中腐植酸之研究」,碩士論文,國立中興大學環境工程研究所,台中,2009。
34. 高樹民,「水環境因子對含氮多環芳香與腐植酸結合係數之影響」,碩士論文,國立中山大學海洋環境及工程學系碩士班,高雄,2007。
35. C. A. Staples, D. R. Peterson, T. F. Parkerton, and W. J. Adams, “The environmental fate of phthalate esters: A literature review,” Chemosphere, 35, 667-749 (1997).
36. 98-99年度毒性化學物質環境流布背景調查計畫,EPA-98-J104-02-205,行政及政策類專案計畫,2009。
37. 毒性化學物質環境流布調查成果手冊,行政院環境保護署編及,2009。
38. R. Q. Long and R. T. Yang, “Carbon nanotubes as superior sorbent for dioxin removal”, Journal of American Chemical Society, 123, 2058-2058 (2001).
39. X. Peng, Y. Li, Z. Luan, Z. Di, H. Wang, B. Tian, and Z. Jia,“Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes”, Chemical Physics Letters, 376, 154-158 (2003).
40. C. Lu, Y. L. Chung, and K. F. Chang, “Adsorption of trihalomethanes from water with carbon nanotubes”, Water Research, 39, 1183-1189 (2005).
41. C. Lu, F. Su, and S. Hu,“Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions”, Applied Surface Science, 254, 7035-7041 (2008).
42. C. A. Staples, D. R. Peterson, T. F. Parkerton, and W. J. Adams, “The environmental fate of phthalate esters: A literature review”, Chemosphere, 35, 667-749 (1997).
43. F. Wang, J. Yao, K. Sun, and B. Xing, “Adsorption of dialkyl phthalate esters on carbon nanotubes”, Environmental Science and Technology, 44, 6985-6991 (2010)
44. 陳珮蓉,「利用酸氧化前後奈米碳管吸附鄰苯二甲酸酯類之特性研究」,碩士論文,國立中央大學環境工程研究所,中壢,2010。
45. 高濂,「奈米粉體的分散及表面改性」,五南圖書出版社,2005。
46. 石濤,「環境化學」,鼎茂圖書出版股份有限公司,2005。
47. LaMer W. K., Healy T. W., “Rev. Pure Appl.Chem.”,13:112-133 (1963)
48. 水環境介質中奈米微粒轉換及宿命研究,EPA-98-U1U1-02-102,行政院環境保護署科技研究類專案計畫,2009。
49. K. Yang and B. S. Xing, “Adsorption of fulvic acid by carbon nanotubes from water”, Environmental Pollution, 157, 1095-1100 (2009).
50. 蔡涵哲,「以單壁奈米碳管吸附芳香族化合物吸附機制之探討」,碩士論文,國立中央大學環境工程研究所,2006。
51. B. Shi, X. Zhuang, X. Yan, J. Lu, and H. Tang, “Adsorption of atrazine by natural organic matter and surfactant dispersed carbon nanotubes”, Journal of Environmental Science, 22, 1195-1202 (2010)
52. D. Lin and B. Xing, “Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions”, Environmental Science and Technology. 42, 5917-5923. (2008)
53. D. H. Lin, N. Liu, K. Yang, L. Z. Zhu, Y. Xu, and B. S. Xing, “ The effect of ionic strength and pH on the stability of tannic acid-facilitated carbon nanotube suspensions”, Carbon, 47, 2875-2882 (2009)
54. Hazardous Substances Data Bank(HSDB)
http://www.nlm.nih.gov/
55. 「水中總有機碳檢測方法-燃燒 / 紅外線測定法」,環署檢字第67787號公告 NIEA W530.51C。
56. 陳建宏,「改質多層奈米碳管儲氫之研究」,國立雲林科技大學工程研究所博士班畢業論文,2008。
57. 劉旭娟,「改良式固相萃取技術應用於超純水中鄰苯二甲酸酯類之微量分析」,碩士論文,國立交通大學環境工程系所,2004。
指導教授 秦靜如(Ching-Ju Chin) 審核日期 2012-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明