博碩士論文 983206023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.222.113.111
姓名 陳聖中(Sheng-Chung Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
(The manual sampling analysis of PM2.5 in Taiwan metropolitan area.)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化
★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析
★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定
★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估
★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性★ 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估及對能見度影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 大氣中細懸浮微粒(氣體動力直徑小於或等於2.5 μm,PM2.5) 對於氣候環境及人體健康有極大的影響,PM2.5濃度及化學組成隨時間及地點的不同會有明顯差異,必須固定時間在不同地點進行檢測,才能有系統地瞭解PM2.5的時間和空間變異。本文彙整2011年3月9日至11月16日,在環保署8個空品監測站進行41次的PM2.5質量濃度手動檢測及在新莊、忠明及小港站加入的PM2.5化學成分手動檢測,探討台灣都會地區PM2.5質量濃度及化學成分的變化,研討議題包括手動檢測及自動監測儀器間的差異及探討、自動監測轉換為手動檢測濃度、採樣及旅運空白分析、氣體吸附和微粒揮發干擾校正、質量閉合(mass closure)、都會區污染來源解析、微粒結合型態、都市霾害探討及能見度的影響。
研究結果顯示,8個空品站的R&P 2000標準方法檢測濃度與監測濃度變化趨勢一致,全數據相關性可達到0.87,但R&P2000檢測濃度大都低於監測濃度,差異百分比為32%。3個成分站的R&P2300檢測濃度與R&P2000檢測濃度,全數據相關性可達0.87,差異百分比約為21%。兩部手動檢測儀器間的PM2.5差異,主要受到R&P2300裝設蜂巢管及濾紙匣的影響。
成分空白分析顯示,碳成分的採樣空白及水溶性離子的二、三階空白濾紙容易超過儀器兩倍方法偵測極限。三個成分站在春季及秋季最主要成分為SO42-,夏季大都以有機碳(organic carbon, OC)為主要成分,春季揮發NO3-比例最低,夏季及秋季NO3-濃度雖然不高但揮發比例明顯。揮發NO3-及NH4+濃度,可藉由採集PM2.5質量濃度與環境最高溫度進行推估,相關性(R2)最佳達到0.84。以絕對主成分分析各成分站PM2.5質量濃度污染來源為光化學污染及汽油車排放影響,以光化學污染貢獻量較高。經由質量閉合估算及模式模擬,氣膠含水量在35% RH環境下對於PM2.5質量濃度仍佔有可觀比例。在氣膠結合型態方面,春季及夏季結合型態為(NH4)2SO4(S)及NH4NO3(S),秋季則以(NH4)2SO4(S)、NH4NO3(S)及NH4Cl(S)為主。多元迴歸發現新莊及小港站影響能見度的PM2.5成分為NO3-及SO42-離子,忠明站為NH4+及Cl-離子,環境因子方面,各成分測站都選入相對濕度的影響。觀察採樣期間受到霾害影響時,各成分物種及氣狀污染物都有提升現象,其中NO3-濃度增加最明顯,造成霾害發生主要為機動車輛排放所致。霾害影響期間,影響小港站能見度的成分物種為NO3-及NH4+。
本文經由系統性檢測台灣PM2.5質量及成分濃度,獲得PM2.5地理及季節變化,建立手動檢測和自動監測濃度關係,評估易揮發成分影響,最後並解析PM2.5污染來源及影響能見度因子。
摘要(英) Atmospheric fine particulate matter (with aerodynamic diameter less than or equal to 2.5 μm, PM2.5) have a great impact on both the environment and human health. PM2.5 mass concentration and chemical composition vary significantly in different times and places. To understand PM2.5 temporal and spatial variations systematically, aerosol samples collected at various places in a fixed time interval is preferred. This study collected 41 PM2.5 mass concentrations at the eight air quality monitoring stations of Taiwan Environmental Protection Administration (TEPA) and resolved PM2.5 chemical composition at the Xinzhuang, Chungming, and Siaogang stations from March 9 to November 16, 2011. The aim of this study is to investigate PM2.5 mass concentration and chemical composition in Taiwan metropolitan area. The subjects studied include deviations between manual collection and continuous monitoring, the conversion of PM2.5 from continuous monitoring to manual collection, field and trip blanks analysis, the artifact corrections from adsorbed gases and semi-volatilized particles, mass closure for analyzed and modeled aerosol components, source apportionment for urban aerosol, derivation for potential compound forms, and factors affecting urban haze and visibility.
The results show that temporal variation of PM2.5 from R&P 2000 federal reference method (FRM) is consistent with continuous monitoring at the eight air quality stations. The coefficient of determination (R2) from linear regression for the whole data could reach at 0.87. However, most R&P 2000 FRM PM2.5 concentration are lower than that of continuous monitoring with an average of absolute deviation at 32%. By contrast, the manual collection of PM2.5 from R&P 2300 and R&P 2000 are correlated well with an R2 value at 0.87 and an average of absolute deviation at 21%. The deviations of PM2.5 mass concentration between two manual collectors are affected by honeycomb denuders and filter package installed in R&P2300.
Blank analysis for chemical composition reveals that field blanks for carbonaceous content and the water-soluble ions in the second and the third filters frequently exceeded two times of method detection limit. SO42- was the major chemical component of PM2.5 at the three speciation sites in spring and fall. By contrast, organic carbon (OC) was the major chemical component in summer. The volatilized percentage of NO3- was lower in spring but higher in summer and fall although the volatilized concentration was not high. The volatilized NO3- and NH4+ concentrations can be estimated with the highest R2 at 0.84 by the collected PM2.5 mass concentration and the highest ambient temperature during collection. Absolute Principal Component Analysis showed that PM2.5 was mainly contributed by photochemical pollution followed by gasoline vehicle emissions. Aerosol water content occupied a considerable fraction of aerosol mass even under 35% RH from mass closure assessment and model simulation. For aerosol compound forms, (NH4)2SO4(S) and NH4NO3(S) were derived for spring and summer; while (NH4)2SO4(S), NH4NO3(S), and NH4Cl(S) were reasoned for fall. Multiple regression analysis (MRA) for atmospheric visibility showed that NO3- and SO42- were major PM2.5 components at the Xinzhuang and Siaogang stations and NH4+ and Cl- were significant at the Chungming station. Among the environmental factors, relative humidity was selected as a significant factor for visibility impairment in MRA. For the haze event during observation period, aerosol components and gaseous pollutants were significantly increased with the increase of NO3-. This indicates vehicle emissions were mainly responsible for haze event. The major chemical species affecting the visibility at the Siaogang station were NO3- and NH4+ during haze event period.
In the present study, PM2.5 mass concentration and composition were investigated systematically to obtain PM2.5 geographical and seasonal variations. In addition, the relationship between manual measurement and continuous monitoring was established and volatilization of semi-volatiled species was evaluated. Finally, source apportionment for PM2.5 and factors affecting visibility degradation were resolved.
關鍵字(中) ★ 氣膠結合型態
★ 細懸浮微粒(PM2.5)
★ 大氣能見度
★ 氣膠污染來源
★ 半揮發發性成分揮發
關鍵字(英) ★ Fine particulate matter (PM2.5)
★ Volatilization of semi-volatiled species
★ Aerosol compound forms
★ Atmospheric visibility
★ Aerosol source apportionment
論文目次 摘要 I
ABSTRACT III
致謝 VI
目錄 VII
圖目錄 X
表目錄 XIV
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 大氣氣膠特性 3
2.2 氣膠水溶性離子結合型態與來源 3
2.3 氣膠碳成分組成特徵及來源 6
2.4 都市地區霾(HAZE)害影響 9
2.5 大氣能見度與細懸浮微粒(PM2.5)的關係 11
2.6 台灣都市地區細懸浮微粒(PM2.5)變化特性 12
2.6 FRM差異比較討論 14
2.6.1 手動採樣FRM篩選器的差異討論 14
2.6.2手動採樣儀器與自動連續監測儀器比較 17
2.7半連續監測(SEMI-CONTINUOUS)儀器濃度轉換FRM檢測濃度方法(U.S. EPA 2002,2011) 21
第三章 研究方法 23
3.1 採樣地點與時間 25
3.1.1 採樣地點及測站環境概述 25
3.1.2 採樣時間及採樣次數 29
3.2 氣膠自動監測儀器及手動採樣儀器 31
3.2.1 手動採樣儀器 31
3.2.2 手動採樣成分濾紙 36
3.2.3 採樣樣本空白品管 36
3.3 手動採樣分析方法 38
3.3.1質量濃度秤重分析 38
3.3.2水溶性離子檢驗分析方法 39
3.3.3碳成分檢驗分析方法 40
3.3.4 ISORROPIA模式 42
3.3.5 絕對主成分分析 43
3.3.6 手動檢測濃度與自動監測濃度定量關係篩選標準 47
3.3.7 連續監測(Continuous)儀器濃度轉換FRM檢測濃度方法 47
3.3.8都市地區氣膠中和型態季節性變化 47
3.3.9微粒揮發NO3-、NH4+、Cl-及OC補償方法 48
3.3.10 都市霾害(Haze)事件篩選標準 49
第四章 結果與討論 50
4.1 手動採樣與自動監測儀器質量濃度變化趨勢 50
4.1.1 新莊空品監測站手動檢測和自動監測質量濃度變化 51
4.1.2 中山空品監測站手動檢測和自動監測質量濃度變化 54
4.1.3 忠明空品監測站手動檢測和自動監測質量濃度變化 56
4.1.4 南投空品監測站手動檢測和自動監測質量濃度變化 59
4.1.5 嘉義空品監測站手動檢測和自動監測質量濃度變化 61
4.1.6 台南空品監測站手動檢測和自動監測質量濃度變化 63
4.1.7 前金空品監測站手動檢測和自動監測質量濃度變化 65
4.1.8 小港空品監測站手動檢測和自動監測質量濃度變化 67
4.2 FRM與自動監測站及R&P2300 手動採樣器比較 70
4.2.1 R&P 2000手動檢測與空品站PM2.5質量濃度定量關係 70
4.2.2 R&P 2000手動檢測與R&P 2300手動檢測質量濃度線性廻歸定量關係 76
4.2.3 R&P2000與R&P 2300及空品站PM2.5質量濃度差異 78
4.2.4 連續監測數據轉換FRM檢測數據 80
4.3 FRM手動採樣器差異比較 84
4.3.1 PM2.5採樣器裝置WINS衝擊器或VSCC旋風離心器比較 84
4.3.2 R&P 2300 PM2.5成分採樣器與R&P 2000 FRM採樣器質量濃度差異探討 87
4.4 各成分監測站PM2.5檢測成分濃度變化趨勢 92
4.4.1 新莊成分監測站PM2.5成分濃度隨時間變化 92
4.4.2 忠明成分監測站PM2.5成分濃度隨時間變化 95
4.4.3 小港成分監測站PM2.5成分濃度隨時間變化 98
4.4.4 PM2.5成分濃度質量閉合(Mass Closure)評估 101
4.5 PM2.5成分採樣及旅運空白值變化 105
4.5.1 各成分站質量濃度空白變化 105
4.5.2新莊站採樣及旅運空白成分變化 106
4.5.3 忠明站採樣及旅運成分空白值變化 111
4.5.4 小港站採樣及旅運空白成分變化 115
4.6 揮發離子濃度與環境最高溫及PM2.5質量濃度關係 120
4.6.1 揮發NO3-濃度與環境最高溫及PM2.5質量濃度關係 120
4.6.2 揮發Cl-濃度與環境最高溫及原始PM2.5質量濃度關係 123
4.6.3 揮發NH4+濃度與環境最高溫及原始PM2.5質量濃度關係 126
4.7 北、中、南都會地區污染來源推估 129
4.7.1 新莊站污染來源貢獻 129
4.7.2忠明站污染來源貢獻 132
4.7.3小港站污染來源貢獻 135
4.8 都市PM2.5氣膠水溶性離子結合型態探討 138
4.8.1新莊站PM2.5氣膠水溶性離子結合型態 138
4.7.2忠明站PM2.5氣膠水溶性離子結合型態 141
4.8.3小港站PM2.5氣膠水溶性離子結合型態 144
4.9 氣膠成分物種對於能見度影響 148
4.9.1 各成分測站大氣能見度與PM2.5成分濃度多元迴歸 148
4.9.2 PM2.5污染來源對大氣能見度影響 156
4.10 都市地區霾(HAZE)害影響 159
4.10.1 都會地區霾害時期PM2.5成分濃度與氣狀污染物變化 159
4.10.2 都市霾害來源及影響探討 162
4.10.3 霾害對於能見度的影響 167
第五章 結論與建議 169
5.1 結論 169
第六章 參考文獻 172
附錄1各次採樣R&P2000及空品站質量濃度差值(空品站- R&P2000)及離群值判斷 185
附錄2 各測站R&P 2000與R&P 2300檢測濃度及自動監測站平均濃度差異百分比 187
附錄3 BASE MODEL的斜率及截距變化與各次儀器和監測方法不同及影響因子監測地點的不同的差異參數變化 195
附錄4 霾害影響期間污染物逐時變化 198
附錄5 口試委員意見答覆 206
參考文獻 Cao, J.J., Ho, K.F., Lee, S.C., Fung, K., Zhang, X.Y., Chow, J.C., Watson, J.G., 2006. Characterization of roadside fine particulate carbon and its 8 fractions in Hong Kong. Aerosol and Air Quality Research 6 (2), 106–122.
Cao, J.J.,Wu, F., Chow, J.C., Lee, S.C., Li, Y., Chen, S.W., An, Z.S., Fung, K.K.,Watson, J.G., Zhu, C.S., Liu, S.X., 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. Atmospheric Chemistry and Physics 5, 3127–3137.
Chan, Y.C., Simpson, R.W.,Mctainsh, G.H., Vowles, P.D., Cohen,D.D., Bailey, G.M., 1999. Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques. Atmos. Environ. 33, 3237–3250.
Chang, C.T., Tsai, C.J., Lee, C.T., Chang, S.Y., Cheng, M.T., Chein, H.M., 2001.Differences in PM10 concentrations measured by b-gauge monitor and hi-vol sampler. Atmospheric Environment 35, 5741–5748.
Chang, S.C., Chou, C. C.K., Chan, C.C., Lee, C.T., 2010. Temporal characteristics from continuous measurements of PM2.5 and speciation at the Taipei Aerosol Supersite from 2002 to 2008, Atmospheric Environment 44, 1088-1096.
Chang, S.C., Chou, C.K., Chan, C.C., Lee, C.T., 2010.Temporal characteristics from continuous measurements of PM2.5 and speciation at the Taipei Aerosol Supersite from 2002 to 2008. Atmospheric Environment 44, 1088e1096.
Chang, S.C., Lee, C.T., 2007. Secondary aerosol formation through photochemical reactions estimated by using air quality monitoring data in Taipei City from 1994–2003. Atmospheric Environment 41, 4002-4017.
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., Hofmann, D. J., 1992. Climate forcing by anthropogenic aerosols. Science 255, 423-430.
Cheng, S.h., Yang, L.X., Zhou, X.h., Xue, L.k., Gao, X.M., Zhou, Y., Wang, W.X., 2011. Size-fractionated water-soluble ions, situ pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan, China. Atmospheric Environment 45, 4631-4640.
Cheng, Y.F., Wiedensohler, A., Eichler, H., Su, H., Gnauk, T., Brueggemann, E., Herrmann, H., Heintzenberg, J., Slanina, J., Tuch, T., Hu, M., Zhang, Y.H., 2008. Aerosol optical properties and related chemical apportionment at Xinken in Pearl River Delta of China. Atmospheric Environment 42, 6351–6372.
Cheng, Y.H., Tsai, C.J., 1997. Evaporation loss of ammonium nitrate particles during filter sampling. Journal of Aerosol Science 28, 1553–1567.
Chou, C.K. Lee, C.T., Cheng, M.T., Yuan, C.S., Chen, S.J., Wu, Y.L., Hsu, W.C., Lung, S.C., Hsu, S.C., Lin, C.Y., Liu, S.C., 2010. Seasonal variation and spatial distribution of carbonaceous aerosols in Taiwan. Atmospheric Chemistry and Physics, vol. 10, 9563–9578.
Chow, J. C., Watson, J. G., Kuhns, H. D., Etyemezian, V., Lowenthal, D. H., Crow, D. J., Kohl, S. D., 2004. Engelbrecht, J. P., and Green, M. C.: Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational (BRAVO) Study, Chemosphere, 54(2), 185–208.
Chow, J.C., Watson, J.G., Chen, L.–W.A., Rice, J., Frank, N.H., 2010. Quantification of PM2.5 Organic Carbon Sampling Artifacts in US Networks. Atmospheric Chemistry and Physics 10, 5223–5239.
Colbeck, I. and Harrison, R. M., 1984. Ozone-econdary aerosol- visibility relationships in North-West England. Science of the Total Environment 34, 87-100.
Deng, X.J., Tie, X., Wu, D., Zhou, X.J., Tan, H.B., Li, F., and Jiang, C., 2008. Long-term Trend of Visibility and its Characterizations in the Pearl River Delta Region (PRD), China. Atmos. Environ. 42: 1424 –1435.
Deng, X.J., Tie, X., Wu, D., Zhou, X.J., Tan, H.B., Li, F., and Jiang, C., 2008. Long-term Trend of Visibility and its Characterizations in the Pearl River Delta Region (PRD), China. Atmos. Environ. 42: 1424–1435.
Du, H., Kong, L., Cheng, T., Chen, J., Du, J., Li, L. Xia, X., Leng, C., Huang, G., 2011. Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols. Atmospheric Environment 45, 5131-5137
Eatough D.J., Farber R., 2009. Apportioning Visibility Degradation to Sources of PM2.5 Using Positive Matrix Factorization. Journal of the Air & Waste Management Association vol. 59, 1092–1110.
EN 14907, 2005. Ambient Air Quality – Standard Gravimetric Measurement Method for the Determination of the PM2.5 Mass Fraction of Suspended Particulate Matter.
Fountoukis, C. and Nenes, A. (2007) ISORROPIA II: A Computationally Efficient Thermodynamic Equilibrium Model for K+ - Ca2+ - Mg2+ - NH4+ - Na+ - SO42- - NO3- - Cl- - H2O Aerosols. Atmospheric Chemistry and Physics 7, 4639–4659.
Friedlander, S.K., 2000. Smoke, Dust, and Haze. Oxford University Press, New York.
Geng, H., Ryu, J.Y., Maskey, S. H., Jung, J., Ro, C.U., 2011. Characterisation of individual aerosol particles collected during a haze episode in Incheon, Korea using the quantitative ED-EPMA technique. Atmospheric Chemistry and Physics, 11, 1327–1337.
Gobeli, D., Schloesser, H., Pottberg, T., 2008. Met One Instruments BAM-1020 Beta Attenuation Mass Monitor US-EPA PM2.5 Federal Equivalent Method Field Test Results. Paper # 2008-A-485-AWMA.
Grover, B.D., Kleinman, M., Eatough, N.L., Eatough, D.J., Hopke, P.K., Long, R.W., Wilson, W.E., Meyer, M.B., Ambs, J.L., (2004). Measurement of Total PM2.5 Mass (Nonvolatile plus Semi-Volatile) with the FDMS TEOM Monitor; Journal of Geophysical Research 110D:D07S03, doi:10.1029/ 2004JD004995.
Guo, J., Rahn, K. A., Zhuang, Guoshun., 2004. A mechanism for the increase of pollution elements in dust storms in Beijing. Atmospheric Environment 38, 855-862.
Hair, J. F., Anderson, R., & Black, W. C., 1995. Multivariate data analysis with readings. Englewood Cliffs, NJ: Prentice-Hall.
Han, Y.M., Cao, J.J., Chow, J.C.,Watson, J.G., Fung, K., Jin, Z.D., Liu, S.X., An, Z.S., 2007. Evaluation of the thermal/optical reflectance method for discrimination between soot- and char-EC. Chemosphere 69, 569–574.
Harrison RM and Yin J (2000) Particle matter in the atmosphere: which particle properties are important for its effects on health ? Sci Total Environ 249 85-101
Hopke, E .P.,Kenski, D., Koerber, M., 2005. Sources of Fine Particles in a Rural Midwestern U.S. Area. Environment Science and Technology 39, 4953-4960.
Hopper, R. P., Peters, N. E., 1989. Use of multivariate analysis for determining sources of solutes found in wet atmospheric deposition in the United States. Environment Science and Technology 23, 1263-1268.
Huang, C.H., Tai, C.Y., 2008. Relative Humidity Effect on PM2.5 Readings Recorded by Collocated Beta Attenuation Monitors. Environmental Engineering Science, Vol. 25, 7.
Huang, X. Qiu, R. Chan, C.K., Pathak, R. K., 2011. Evidence of high PM2.5 strong acidity in ammonia-rich atmosphere of Guangzhou, China: Transition in pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO42–] =1.5. Atmospheric Research 99, 488–495.
Huang, X., Qiu, R., Chan, C.K., Pathak, K.R., 2011. Evidence of high PM2.5 strong acidity in ammonia-rich atmosphere of Guangzhou, China: Transition in pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO4 2–]=1.5. Atmospheric Research 99, 488–495.
Jacobson, M.Z., 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695–697.
John, W., Wang, H.C., 1991. Laboratory testing method for samplers Flowered effectiveness from particle loading. Aerosol Science and Technology 14, 93–101.
John, W., Winklmayr, W., Wang, H.C., 1991. Particle deagglomeration and reentrainment in a PM10 sampler. Aerosol Science and Technology 14, 165–176.
Kenny L.C., Thorpe A.,(2001). Evaluation of VSCC Cyclones, Health & Safety Laboratory Report # IR/L/EXM/01/01.
Kim, E., Hopke, P. K., 2004. Improving source identification of fine particles in a rural northeastern U.S. area utilizing temperature-resolved carbon fractions, J. Geophys. Res., 109, D09204, doi:10.1029/ 2003JD004199.
Kim, K.H., Sekiguchi, K. Kudo, S., Sakamoto, K., 2011. Characteristics of Atmospheric Elemental Carbon (Char and Soot) in Ultrafine and Fine Particles in a Roadside Environment, Japan. Aerosol and Air Quality Research, 11: 1–12.
Kim, Y.J., Kim, K.W., Kim, S.D., Lee, B.K., Han, J.S., 2006. Fine particulate matter characteristics and its impact on visibility impairment at two urban sites in Korea: Seoul and Incheon. Atmospheric Environment 40, S593–S605.
Lee, C.–T., Chang, S. Y. (2002) A GC–TCD Method for Measuring the Liquid Water Mass of Collected Aerosols. Atmospheric Environment 36, 1883–1894.
Lee, C.–T., Hsu, W. C. (1998) A Novel Method to Measure Aerosol Water Mass. Journal of Aerosol Science 29, 827–837.
Lee, C.–T., Hsu, W.C. (2000) The Measurement of Liquid Water Mass Associated with Collected Hygroscopic Particles. Journal of Aerosol Science 31, 189–197.
Lee, C.T., Tsuang, M.T., Chan, C.C., Cheng, T.J., Hung, S.L., 2006. Aerosol characteristics from Taiwan Aerosol Supersite in Asian Yellow-dust Periods in 2002. Atmospheric Environment 40, 3409-3418.
Lee, H.S., Wadden, R.A., Sche., P.A., 1993. Measurement and evaluation of acid air pollutants in Chicago using an annular denuder system. Atmospheric Environment 27A (4), 553–554.
Lee, J.H., Hopke, P.K, Holsen, T.M., Polissar, A.V., Lee, D.W., Edgerton, E.S., Ondov, J.M., Allen, E.G, 2010. Measurements of fine particle mass concentrations using continuous and integrated monitors in eastern us cities. Aerosol Science and Technology, 39, 261–275.
Lee, J.H., Hopke, P.K., Turner, J.R., 2006. Source identification of airborne PM2.5 at the St. Louis-Midwest Supersite. Journal of Geophysical Research 111, D10S10.
Li, W., Zhou, S., Wang, X., Xu, Z., Yuan, C., Yu, Y., Zhang, Q., Wang, W., 2011. Integrated evaluation of aerosols from regional brown hazes over northern China in winter: Concentrations, sources, transformation, and mixing states. Journal of Geophysical Research 116, D09301.
Malm, W.C., Hand, J.L., 2007. An examination of the physical and optical properties of aerosols collected in the IMPROVE program. Atmos. Environ. 41, 3407–3427.
Malm,W.C., Day, D.E., 2001. Estimates of aerosol species scattering characteristics as a function of relative humidity. Atmos. Environ. 35, 2845–2860.
Mangelson, N. Lewis F., L., Joseph J. M., Cui W., Machir J., Williams N. W., Eatough D. J., Rees L. B., Wilkerson T. and Jensen D. T., 1997. The Contribution of Sulfate and Nitrate to Atmospheric Fine Particles During Winter Inversion Fogs in Cache Valley, Uath. Journal of the AWMA 47, 167-175.
McFarland, A.R., Ortiz, C.A., 1987. Aerosol sampling characteristics of the Sierra–Anderson Model 1200 PM10 inlet. Aerosol Technology Laboratory Report No. 4716/01/08/81/ARM, Texaz A&M University, College Station, TX, pp. 15–19.
Meng, Z., Seinfeld, J.H., Sazena, P., Kim, Y.P., 1995. Contribution of water to particulate mass in the south coast air basin. Aerosol Science and Technology 22, 111–123.
Noble, C.A., Vanderpool, R,W., Peters, T.M., McElroy, F.F., Gemmill, D.B., Wiener, R.W., 2001. Federal Reference and Equivalent Methods for Measuring Fine Particulate Matter. Aerosol Science and Technology 34, 457–464.
Nunes, T.V., Pio, C.A., 1993. Carbonaceous aerosols in industrial and coastal atmospheres. Atmospheric Environment 27, 1339–1346.
Ohta, S., Okita, T. (1990) A Chemical Characterization of Atmospheric Aerosol in Sapporo. Atmospheric Environment, 24A, 815-822.
Pathak, R.K., Yao, X.H., Chan, C.K., 2004. Sampling artifacts of acidity and ionic species in PM2.5. Environment Science Technology 38, 254–259.
Peters T.M., Vanderpool, R.W., Wiener, R.W., 2001. Design and Calibration of the EPA PM2.5 Well Impactor Ninety-Six (WINS). Aerosol Science and Technology 34, 389–397.
Pilinis, C., Seinfeld, J.H., 1989. Water content of atmospheric aerosols. Atmospheric Environment 23, 1601–1606.
Ram, K., Sarin, M.M., Tripathi, S.N., 2010. A 1 year record of carbonaceous aerosols from an urban site in the Indo‐Gangetic Plain: Characterization, sources, and temporal variability. Journal of Geophysical Research vol.115, D24313.
Ranade, M.B., Woods, M.C., Chen, F.L., Purdue, L.J., Rehme, K.A., 1990. Windtunnel evaluation of samplers. Aerosol Science and Technology 13, 54–71.
Rees, S.L., Robinson, A.L., Khlystov, A., Stanier, C.O., Pandis, S.N. (2004) Mass Balance Closure and the Federal Reference Method for PM2.5 in Pittsburgh, Pennsylvania. Atmospheric Environment 38, 3305–3318.
Schichtel, B. A., Husar, R. B., Falke, S. R., Wilson, W. E., 2001. Haze trends over the United States 1980-1995. Atmospheric Environment 35, 5205-5210.
Schwab, J.J., Felton, H.D., Rattigan, O.V., Demerjian, K.L., (2006). New York State Urban and Rural Measurements of Continuous PM2.5 Mass by FDMS, TEOM, and BAM. Journal of the Air & Waste Management Association Vol 56, 372–383.
See, S.W., Balasubramanian, R., Wang, W., 2006. A study of the physical, chemical, and optical properties of ambient aerosol particles in Southeast Asia during hazy and nonhazy days. Journal of Geophysical Research Vol. 111, D10S08.
Seinfeld, J. H., Pandis, S. N., 1998. Mathematical model of atmospheric fine particle associated primary organic compound concentrations. Journal of Geophysical Research 101, 19379-19394.
Seinfeld, J.H., Pandis, S.N., 1997. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley-Interscience
Shen, Z., Cao, J., Arimoto, R., Han, Y., Zhu, C., Tian, J., Liu, S., 2011. Characteristics of Atmospheric Elemental Carbon (Char and Soot) in Ultrafine and Fine Particles in a Roadside Environment, Japan. Aerosol Science and Technology, 44:461–472.
Solomon, P. A. and Moyers J. L., 1984. Use of a High Volume Dichotomous Virtual Impactor to Estimate Light Extinction due to Carbon and Related Species in the Phoenix Haze. Science of the Total Environment 36, 169-175.
Sun, Y., Zhuang, G., Tang, A., Wang, Y., An, Z., 2006. Chemical Characteristics of PM2.5 and PM10 in Haze-Fog Episodes in Beijing. Environmental Science Technology 40, 3148-3155.
Takahashi, K., 2008. Examination of discrepancies between beta-attenuation and gravimetric methods for the monitoring of particulate matter. Atmospheric environment, 42, 5232-5240.
Targino, A. C., Noone, K. J., Ostrom, E., 2005. Airborne in situ characterization of dry aerosol optical properties in a multisource influenced marine region. Tellus Series B-Chemical and Physical Meteorology 57, 247-260.
Thurston, G. D., Spengler, J. D., 1985. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmospheric Environment. 18, 9-25.
Thurston, G. D., Spengler, J. D., 1985. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmospheric Environment. 18, 9-25.
Truex, T. J., Pierson, W. R., Mckee, D. E., 1980. Sulfate in diesel exhaust. Environmental Science Technology 14, 1118-1121.
Tsai, C.J., 1995. A fieldstud y of three collocated ambient PM10 samplers. Particle and Particle System Characteristics 12, 10–15.
Tsai, C.J., Cheng, Y.H., 1996. Comparison of two ambient β-gauge PM10 samplers. Journal of Air and Waste Management Association 46, 142–147.
Tsai, Y.I., Chen, C.L., 2006.Characterization of Asian dust storm and non-Asian dust storm PM2.5 aerosol in southern Taiwan. Atmospheric Environment 40, 4734-4750.
Twomey, S., 1977. The influence of pollution on the short-wavde albedo of clouds. Journal of the Atmospheric Sciences 34, 1149-1152.
U.S. Environment Protection Agency. 2002. Data Quality Objectives (DQOs) for Relating Federal Reference Method (FRM) and Continuous PM2.5 Measurements to Report on Air Quality Index (AQI). EPA-454/B-02-002.
U.S. Environment Protection Agency. 2011. Equating Semi-Continuous (SC) PM2.5 Mass Monitor Measurement Values with Federal Reference Method (FRM) PM2.5 Monitor Measurement Values. EPA/600/R-11/039.
U.S. Environment Protection Agency. 2011. List of Designated Reference and Equivalent Methods. April 1, 2011 National Exposure research Laboratory.
U.S. Environment Protection Agency. 2011. May Quality Assurance Newsletters http://www.epa.gov/ttn/amtic/files/ambient/qa/qanews11.pdf
Vanderpool, R.W., Peters, T. M., Natarajan, S., Gemmill &, D.B., Wiener, R.W., 2001. Evaluation of the Loading Characteristics of the EPA WINS PM2.5 Separator. Aerosol Science and Technology 34, 444–456.
Viezee, W. and Oblanas, J., 1969. Lidar-observed haze layers associated with thermal structure in the lower atmosphere, Journal of Applied Meteorology 8, 369–375.
Watson, J.G., Chow, J.C., Lowenthal, D.H., Pritchett, L.C., Frazier, C.A., Neuroth, G.R., Robbins, R., 1994. Differences in the carbon composition of source profiles for diesel- and gasoline-powered vehicles. Atmospheric Environment 28 (15), 2493–2505.
World Health Organization.2005. Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, Global Update 2005. Summary of Risk Assessment.
Yang, L.X., Wang, D.C., Cheng, S.H., Wang, Z., Zhou, Y., Zhou, X.H., Wang, W.X., 2007. Influence of meteorological conditions and particulate matter on visual range impairment in Jinan, China. Sci. Total. Environ. 383, 164–173.
Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., Ye, B., 2002. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment 36, 4223-4234.
Yuan, C.S., Lee, C.G., Liu, S.H., Chang, J.C., Yuan, C., Yang, H.Y., 2006. Correlation of atmospheric visibility with chemical composition of Kaohsiung aerosols. Atmospheric Research 82, 663–679.
Zhang, F., Xu, L., Chen, J., Yu, Y., Niu, Z., Yin, L., 2012. Chemical compositions and extinction coefficients of PM2.5 in peri-urban of Xiamen, China, during June 2009–May 2010. Atmospheric Research 106, 150–158.
Zhang, X.Q., McMurry, P.H., 1987. Theoretical analysis of evaporative losses from impactor andfilter deposits. Atmospheric Environment 21, 1779–1789.
Zhang, X.Q., McMurry, P.H., 1992. Evaporative losses of fine particulate nitrates during sampling. Atmospheric Environment 26A, 3305–3312.
Zhao, W., Hopke, P. K., 2004. Source apportionment for ambient particles in the San Gorgonio wilderness, Atmospheric Environment 38, 5901–5910.
Zhao, W., Hopke, P.K., 2004. Source Apportionment for ambient particles in the San Gorgonio wilderness. Atmospheric Environment 38,5901-5910.
Zhu, C.S., Chen, C.C., Cao, J.J. Tsai, C.J., Chou, C.K., Liu, S.C., Roam, G.D., 2010. Characterization of carbon fractions for atmospheric fine particles and nanoparticles in a highway tunnel. Atmospheric Environment 44, 2668-2673
Zhu, K., Zhang, J., Lioy, P., 2006. Evaluation and comparison of continuous fine particulate matter monitors for measurements of ambient aerosols. Journal of the Air & Waste Management Association, 57, 1499-1506.
余政哲,2010。鹿林山大氣氣膠含水量探討及乾氣膠光學特性。國立中央大學環境工程研究所碩士論文。
李崇德、吳義林、周崇光、張士昱、莊銘棟、溫志雄,2011。“細懸浮微粒(PM2.5)質量濃度與成分人工採樣分析先驅計畫”期末報告,EPA-100-FA11-03-A088。
林琴軒,2010。北部氣膠超級測站近七年氣膠特性變化探討。國立中央大學環境工程研究所碩士論文。
許博閔,2011。鹿林山大氣背景站不同氣團氣膠光學特性。國立中央大學環境工程研究所碩士論文。
陳邦瑋,2006。從台北都會區細氣膠特性評估PM1及PM2.5對環境影響的顯著性。國立中央大學環境工程研究所碩士論文。
賴正仁,2000。台灣地區大氣氣膠特性之研究-高雄及台北都會地區單顆粒氣膠及混合氣膠特性與污染來源推估。國立中央大學環境工程研究所碩士論文。
指導教授 李崇德(Chung-Te Lee) 審核日期 2012-5-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明