博碩士論文 986201015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:109 、訪客IP:18.224.37.68
姓名 黃子茂(Zih-Mao Huang)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 同化虛擬位渦反演渦旋對凡那比颱風初始場分析及預報之影響
(A Study of Typhoon Vortex Initialization Based on Potential Vorticity Inversion)
相關論文
★ 雲微物理參數化法應用於颱風模式中之研究★ 1998年臺灣梅雨個案模擬及其應用 -蘭陽平原之擴散研究
★ 地形對颱風路徑的影響之數值探討★ 中尺度MM5數值模式與大氣擴散模式之整合應用研究
★ 侵台颱風之GPS折射率3DVAR資料同化及數值模擬★ 地形及渦旋初始化對類似納莉颱風路徑及環流變化之影響
★ 類似桃芝颱風路徑之模擬★ WRF模式在颱風路徑預報應用與EOF分析誤差因素
★ 利用WRF3DVAR同化GPS折射率資料探討 對於颱風預報的影響★ 衛星資料結合變分分析對數值預報之影響
★ 利用MM5 4DVAR模式同化掩星折射率資料及虛擬渦旋探討颱風數值模擬之影響★ 利用MM5 4DVAR同化虛擬渦旋探討其對WRF模式預報颱風之影響
★ GPS掩星觀測資料同化及對區域天氣預報模擬之影響★ 西北向侵台颱風登陸前中心路徑打轉之模擬研究
★ 衛星資料與虛擬渦旋四維變分同化對颱風數值模擬的影響★ 資料同化對台灣地區颱風和梅雨模擬之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 模式初始條件的設定對於颱風的預報有很大的影響。為了增加颱風的初始強度,前人研究加入虛擬渦旋以增強颱風的強度。位渦為一包含熱力及動力結構之物理量,經過反演可以得到三維的動力及熱力結構。本篇研究基於Kieu and Zhang(2010)的研究,利用虛擬位渦擾動反演出三維風場、氣壓場及溫度場,並使用三維變分同化(3DVAR)將虛擬位渦反演渦旋同化至2010年9月15日12 UTC颱風凡那比(Fanapi)的初始場中,並與植入虛擬渦旋之模擬結果做比較。位渦反演研究顯示,位渦擾動可以增強颱風眼牆外的風速,降低颱風中心氣壓,且促進暖核的發展。加入虛擬位渦擾動可以增強颱風結構及強度,較強的位渦擾動,反演後的風場較大,颱風中心氣壓較低;較弱的位渦擾動,反演後的風場較小,颱風中心氣壓較大,位渦擾動強度與颱風最大風速及颱風中心最低氣壓呈線性相關。眼牆傾斜的位渦擾動不會改變反演結果的強度,但會改變颱風垂直結構的分布。
本研究進一步將上述的虛擬位渦反演渦旋同化至2010年9月15日12 UTC颱風凡那比(Fanapi)的初始場中。實驗結果顯示,同化虛擬位渦反演渦旋及植入虛擬渦旋可以改善颱風初始場的結構與強度,但同化包含溫度資料的虛擬位渦反演渦旋在初始場颱風外圍產生強烈的反氣旋。96小時模擬顯示,同化虛擬位渦反演渦旋的實驗都可以改善颱風凡那比的路徑及強度模擬,其中以同化風場及氣壓場的結果最好。植入虛擬渦旋的模擬結果在本次實驗中並不理想,未來可以做進一步的討論。位渦擾動分布敏感度實驗顯示,同化較強的虛擬位渦反演渦旋,模擬的颱風初始場較強,同化較弱的虛擬位渦反演渦旋,模擬的颱風初始場較弱,而同化眼牆傾斜的虛擬位渦反演渦旋對颱風初始場強度的影響並不明顯,但可以改變颱風垂直結構的分布。眼牆斜率愈大的虛擬位渦反演渦旋,同化後的颱風初始場眼牆斜率愈大。本實驗顯示,對於2010年9月15日12 UTC颱風凡那比而言,虛擬位渦反演渦旋強度較弱、眼牆傾斜率較大的模擬結果最好。整體來說同化位渦資料可以有效改善颱風路徑預報及初始場強度,若要發展成一套作業系統仍需要更多個案的測試。
摘要(英) The specification of the initial typhoon vortex structure plays an important role in the prediction of typhoon. Conventionally, vortex bogussing with a Rankine vortex profile is usually applied to specify the initial conditions for typhoons, thus losing a vertically consolidated vortex structure. In this study, the 3-D balanced vortex structure is obtained using the potential vorticity (PV) inversion developed by Kieu and Zhang (2010). This inversion method may provide useful variables such as 3-D wind, pressure and temperature most of which can be assimilated by the WRF 3DVAR to improve the typhoon vortex for Fanapi (2010). In the PV inversion, PV anomalies (PVAs) enhance cyclonic flows in the eyewall and reduce the minimum pressure in the eye. Application of the bogus PVAs can improve typhoon vertical structure and intensity. The results show that typhoon intensity is more sensitive to change in the amplitude of PVAs than in eyewall titling rate, but the latter may improve typhoon vertical structure.
The PV-inverted bogus vortex was assimilated to improve the initial typhoon vortex for Fanapi. Assimilation with the PV-inverted vortex shows a more organized vertical structure and leads to a remarkable improvement in Fanapi’s track prediction, as compared to assimilation with a conventional Rankine vortex. Assimilation with a stronger (weaker) PV-inverted vortex gives a stronger (weaker) initial typhoon vortex. Assimilation with an eyewall-titling PV-inverted vortex also shows an initial typhoon vortex with an eyewall more titling with height. This study shows that Fanapi’s prediction will be improved as the assimilated PV-inverted vortex is more similar to the observed initial typhoon vortex. The new vortex initialization developed in this study facilitates implantation of a slantwise eyewall as well as an asymmetric vortex, thus potentially leading to improvement on typhoon prediction.
關鍵字(中) ★ 位渦反演
★ 虛擬渦旋
關鍵字(英) ★ Potential Vorticity inversion
★ bogus vortex
論文目次 中文摘要 ............................................................................... I
英文摘要 ............................................................................... II
誌謝 ................................................................................... III
目錄 ................................................................................... IV
圖表說明 ............................................................................... VI
符號說明 ............................................................................... VIII
第一章緒論 ........................................................................... 1
1-1前言 .............................................................................. 1
1-2前人研究 .......................................................................... 1
1-3研究動機及目的 .................................................................... 3
第二章研究方法 ....................................................................... 5
2-1 位渦反演方程式 ................................................................... 5
2-2 準平衡ω方程式 ................................................................... 9
第三章模式簡介及實驗設計 ............................................................. 11
3-1 WRF 模式介紹 ..................................................................... 11
3-2 WRF TC bogus 方法介紹 ............................................................ 11
3-3 模式設定 ......................................................................... 13
3-4 實驗設計 ......................................................................... 13
第四章虛擬位渦反演與同化 ............................................................. 15
4-1 虛擬位渦擾動設定 ................................................................. 15
4-2 虛擬位渦反演結果 ................................................................. 15
4-3 虛擬位渦反演渦旋同化 ............................................................. 17
第五章凡那比颱風模擬實驗 ............................................................. 19
5-1 同化參數實驗 ..................................................................... 19
5-2 位渦擾動分布實驗 ................................................................. 21
5-3 眼牆傾斜率實驗 ................................................................... 23
第六章總結與未來展望 ................................................................. 25
參考文獻 ............................................................................. 28
附錄一 ............................................................................... 32
附錄二 ............................................................................... 33
附錄三 ............................................................................... 36
附表與附圖 ........................................................................... 37
參考文獻 洪于珺,2010:颱風辛樂克(2008) WRF 模擬及位渦反演之研究。國立中央大學大氣物
理研究所碩士論文,1-83。
劉豫臻,2009:聖帕颱風模擬的位渦反演之診斷分析。國立中央大學大氣物理研究所
碩士論文,1-85。
Davis, C. A., 1992: Piecewise potential vorticity inversion. J. Atmos. Sci., 49, 1397–1411.
Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon.
Wea. Rev., 119, 1929-1953.
Davis, C. A., E. D. Grell, and M. A. Shapiro, 1996: The balanced dynamical nature of a
rapidly intensifying oceanic cyclone. Mon. Wea. Rev., 124, 3-26.
Eliassen, A., 1952: Slow thermally or frictionally controlled meridional circulation in a
circular vortex. Astrophys. Norv., 5, 19-60.
Franklin, J. L., S. J. Lord, S. E. Feuer, and F. D. Marks, 1993: The kinematic structure of
Hurricane Gloria (1985) determined from nested analyses of dropwindsonde and
Doppler radar data. Mon. Wea. Rev., 121, 2433–2451.
Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical
formulation and solution. J. Atmos. Sci., 27, 11-37.
Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of
isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877-946.
Huo, Z.-H., D.-L. Zhang, and J. R. Gyakum, 1998: An Application of Potential Vorticity
Inversion to Improving the Numerical Prediction of the March 1993 Superstorm. Mon.
Wea. Rev., 126, 424-436.
Kieu, C. Q. 2005: Piecewise Potential Vorticity Inversion. Master thesis, pp. 81, Department
of Atmospheric and Oceanic Science, University of Maryland, USA.
Kieu, Chanh Q., Da-Lin Zhang, 2010: A Piecewise Potential Vorticity
  Inversion Algorithm and Its Application to Hurricane Inner-Core
  Anomalies. J. Atmos. Sci., 67, 2616–2631.
Kurihara, Y., N. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models
by vortex specification. Mon. Wea. Rev., 121, 2030-2045.
Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL
hurricane prediction system. Mon. Wea. Rev., 123, 2791-2801.
Liu, Y. D., D.-L. Zhang, and M. K. Yau, 1999: A multiscale numerical study of Hurricane
Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127,
2597–2616.
Marks, F. D., R. A. Houze, and J. F. Gamache, 1992: Dual-aircraft investigation of the inner
core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919–942.
Marks, F. D., P. G. Black, M. T. Montgomery, and R. W. Burpee, 2008: Structure of the Eye
and Eyewall of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 1237–1259.
Möller, J. D., and S. C. Jones, 1998: Potential vorticity inversion for tropical cyclones using
the asymmetric balance theory. J. Atmos. Sci., 55, 259–282.
Möller, J. D., and L. J. Shapiro, 2002: Balanced contributions to the intensification of
Hurricane Opal as diagnosed from a GFDL model forecast. Mon. Wea. Rev., 130,
1866–1881.
Olsson, P. Q., and W. R. Cotton, 1997: Balanced and unbalanced circulations in a primitive
equation simulation of a midlatitude MCC. Part II: Analysis of balance. J. Atmos. Sci.,
54, 479–497.
Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000:
Low-wavenumber structure and evolution of the hurricane inner core observed by
airborne dual-Doppler radar. Mon. Wea. Rev., 128, 1653–1680.
Schubert, W. H., S. A. Hausman, M. Garcia, K. V. Ooyama, and H.-C. Kuo, 2001: Potential
vorticity in a moist atmosphere. J. Atmos. Sci., 58, 3148–3157.
Shapiro, L. J., and J. L. Franklin, 1995: Potential vorticity in Hurricane Gloria. Mon. Wea.
Rev., 123, 1465–1475.
Shapiro, L. J., and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly
rotating vortices. J. Atmos. Sci., 50, 3322–3335.
Shapiro, L. J., 1996: The motion of Hurricane Gloria: A potential vorticity diagnosis. Mon.
Wea. Rev., 124, 2497–2508.
Wang, X., and D.-L. Zhang, 2003: Potential vorticity diagnosis of a simulation hurricane.
Part I: formulation and quasi-balanced flow. J. Atmos. Sci., 60, 1593–1607.
Willoughby, H. E., 1990: Gradient balance in tropical cyclones. J. Atmos. Sci., 47, 265-274.
Wu, C.-C., and K. A. Emanuel, 1995a: Potential vorticity diagnostics of hurricane
movement. Part I: A case study of Hurricane Bob (1991). Mon. Wea. Rev., 123,
69–92.
Wu, C.-C., and K. A. Emanuel, 1995b: Potential vorticity diagnostics of hurricane
movement. Part II: Tropical storm Ana (1991) and Hurricane Andrew (1992). Mon.
Wea. Rev., 123, 93–109.
Xiao, Q., X. Zou, and B. Wang, 2000: Initialization and simulation of a landfalling hurricane
using a variational bogus data assimilation scheme. Mon. Wea .Rev., 128, 2252-2269.
Zhang, D.-L., and C. Q. Kieu, 2006: Potential vorticity diagnosis of a simulation hurricane.
Part II: Quasi-balanced contributions to forced secondary circulations. J. Atmos. Sci.,
63, 2898-2914.
Zhang, D.-L., Y. Liu, and M.-K. Yau, 2000: A multiscale numerical study of hurricane
Andrew (1992). Part III: Dynamically induced vertical motion. Mon. Wea. Rev., 128,
3772-3788.
Zhang, D.-L., Y. Liu, and M. K. Yau, 2001: A multiscale numerical study of Hurricane
Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev., 129, 92-107.
Zhang, D.-L., Y. Liu, and M. K. Yau, 2002: A multiscale numerical study of Hurricane
Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130, 2745–2763.
指導教授 黃清勇(Ching-Yuang Huang) 審核日期 2012-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明