博碩士論文 982204021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.133.144.197
姓名 陳怡君(Yi-Jyun Chen)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 植化物紫草素在小鼠皮膚上增加血管通透性之研究
(Use of Shikonin for Enhancing Vascular Permeability in Skin Tissues)
相關論文
★ 第三群LEA蛋白質表現與功能分析★ 水稻小分子量熱休克蛋白質Oshsp16.9A之N端區域功能性分析
★ 植物逆境蛋白質基因啟動子與功能分析★ 植物受溫度調控之基因的功能與機制分析
★ 錯誤褶疊蛋白質誘導之擬熱休克反應機制之探討★ 受熱與ABA調控水稻基因-OsRZFP1之生理功能分析
★ 受熱與ABA調控基因AtRZFP33之生理功能分析★ 水稻第一族小分子量熱休克蛋白質OsHSP16.9A及OsHSP18.0之生理功能分析
★ 蝴蝶蘭開花相關基因PaCOL2啟動子之特性分析★ 利用水稻HSP17.3啟動子探討阿拉伯芥熱休克因子在逆境下對細胞內蛋白質反應之角色分析
★ 蝴蝶蘭開花相關基因PaCOL1 啟動子之特性分析★ 分析水稻 RING 鋅手指蛋白質 OsRZFP34 與其正向調控蛋白質之交互作用
★ 水稻小分子量熱休克蛋白質- OsHSP16.9A在水稻種子耐熱性之功能分析★ Oryzasin 1 在水稻種子耐熱性之功能分析
★ 水稻熱休克蛋白質OsHSP16.9A與OsHSP101之交互作用分析★ 水稻小分子量熱休克蛋白質—OsHSP16.9A關鍵胺基酸分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在過去的一系列實驗研究中,紫草素(shikonin),是由紫草(Lithospermum erythrorhizon)所萃取出來的主要成分,已被證實具有許多不同之細胞學及分生學之生物活性及藥理活性,例如傷口癒合、抗發炎及抗腫瘤等之活性等。此篇研究之主要目的為研判紫草素是否及如何涉及血管通透性之調節。在本文中,我們利用純化之紫草素塗抹於不同部位的小鼠皮膚上,包括耳朵、腹部及腿部之皮膚,而後分別於不同時間點手術取下處理過之皮膚標本,測試並探討在其調節血管通透性扮演重要角色之matrix metalloproteinases-2和-9(MMP-2和-9)以及E-cadherin之表現量。並且藉由Evans blue dye自血管滲入組織間的現象觀察血管通透性之情況。實驗結果顯示紫草素能夠提升小鼠皮膚中Evans blue dye的滲出量,以及經由紫草素塗抹之皮膚組織的MMP-9 and MMP-2酵素表現量也比控制組的量高出許多。此外,紫草素還能夠局部控制皮膚之血管通透性。在組織切片中,我觀察到小鼠皮膚的皮下層(subcutaneous layer)之厚度明顯增加。為了進一步探討紫草素在小鼠皮膚之組織是否會促進發炎反應,我們評估了與發炎反應相關之細胞激素interleukin-1β (IL-1β)及interleukin-6 (IL-6)之表現量,令人驚訝的是,經由紫草素塗抹之皮膚組織也可偵測到高量的IL-1β及IL-6。綜合以上所述,紫草素能夠有效增加皮膚之血管通透性及同時促進類似輕度發炎之反應,因此在改善藥物輸送效率及專一性的臨床應用上,我們認為紫草素具有作為不同皮膚敷劑藥物佐劑之潛力。
摘要(英) Various previous studies have shown that shikonin, which is derived from medicinal plant Lithospermum erythrorhizon, can display diverse pharmacological beneficial effects or strong and specific bioactivities, e.g., in wound healing-, anti-inflammatory- and anti-tumor bioactivities. The aim of my present experimental study is to address whether and how shikonin may be involved in the regulation of vascular permeability in mouse skin tissues. Shikonin-treated skin samples originating from different organs, including ear, abdominal and leg skin of test mice, were collected at different time points tested, and protein expression levels of matrix metalloproteinases (MMP) and E-cadherin determined. Activity of vascular permeability was investigated by measuring the level of extravasation of Evans blue dye from blood vessels by Miles assay; also determined by the expression levels of MMP-2, MMP-9 and E-cadherin. MMP-2 and MMP-9 are two representative members of the MMPs family that play a critical role in regulation of vascular permeability. As revealed by Miles assay, shikonin exhibited high activity in extravasation of Evans blue dye from blood vessels to the adjacent dermal tissues, clearly indicating its leakage. Shikonin-treated skins samples showed higher protein expression levels for MMP-9 and MMP-2 when compared with vehicle control samples. To further evaluate whether shikonin can confer pro-inflammatory effect on skin tissue, the expression level of IL-1β and IL-6 were determined. High levels of IL-1β and IL-6 were found in shikonin-treated skins. Together, our data indicate that topical application of shikonin can effectively enhance vascular permeability in test skin, suggesting that shikonin may be clinically applicable as a potential adjuvant for use on improving the efficiency and specificity of drug delivery into adjacent tissues.
關鍵字(中) ★ 紫草素
★ 血管通透性
★ 皮下層
★ 發炎反應
關鍵字(英) ★ inflammation
★ MMP-9
★ MMP-2
★ subcutaneous layer
★ vascular permeability
★ shikonin
論文目次 目錄
頁次
中文提要 i
英文提要 ii
誌謝 iii
目錄 iv
縮寫說明 vi
1. Introduction 1
1-1 Enhanced Vascular Permeability in Pharmacological Use 1
1-2 Regulatory Mechanisms for Vascular Permeability 2
1-3 Roles of Matrix Metalloproteinases and E-cadherin 3
1-4 Interkeukin-1β and Interkeukin-6 for Inflammation in Skin 5
1-5 Shikonin 7
2. Materials and Methods 9
2-1 Chemicals 9
2-2 Animals 9
2-3 Treatment for Induction of Vascular Permeability 9
2-4 Measurement of Vascular Permeability by Miles Assay 10
2-5 Histological Evaluation of Abdominal Skin in Test Mice: Hematoxylin-Eosin Staining 11
2-6 Extraction of Proteins from Skin Tissues 12
2-7 Western Blot Analysis 12
2-8 ELISA 13
3. Results 14
3-1 Vascular Permeability in Skin Tissue Enhanced by Topical Application of Shikonin 14
3-2 Exudation of Evans Blue Dye from Skin Tissues is Enhanced by Shikonin Treatment 16
3-3 Induction of Matrix Metalloproteinases Activity in Skin Tissues by Shikonin Treatment 17
3-4 Shikonin Suppresses the Expression of E-cadherin in Skin Tissues 18
3-5 Morphological Changes in Dermal and Subcutaneous Layers of Test Abdominal Skin Tissues 19
3-6 Evaluation of the Shikonin Dosage Effect on Vascular Permeability in Ear, Abdominal and Leg Skin Tissues 20
3-7 Shikonin Treatment Induces Expression of IL-1β and IL-6 in Mouse Skin Tissues 21
4. Discussion 23
4-1 Shikonin-induced Vascular Permeability and Inflammatory Response 23
4-2 Shikonin may Confer Differential Effects on Thin versus Thick Skin Tissues 24
4-3 Comparison on Stimulation on IL-1β and IL-6 Expression between Shikonin and TPA-treated Skin Tissues 25
4-4 Anti- and Pro-inflammatory Effects of Shikonin 26
4-5 Accumulation of Pharmaceuticals or Drugs at Targeted Skin Sites for Drug Delivery 27
4-6 Relationship between Tissue Chemotaxis and Enhanced Vascular Permeability 28
4-7 Perspective of Shikonin-induced Vascular Permeability for Drug Delivery……….. 29
5. Conclusion 30
6. Figures 31
7. Reference 50
參考文獻 1. Boehm U, Klamp T, Groot M, Howard JC. Cellular responses to interferon-gamma. Annual review of immunology. 1997;15:749-795
2. Linthicum DS, Munoz JJ, Blaskett A. Acute experimental autoimmune encephalomyelitis in mice. I. Adjuvant action of bordetella pertussis is due to vasoactive amine sensitization and increased vascular permeability of the central nervous system. Cellular immunology. 1982;73:299-310
3. Schwab E, Burkart V, Freytag G, Kiesel U, Kolb H. Inhibition of immune-mediated low-dose streptozotocin diabetes by agents which reduce vascular permeability. Immunopharmacology. 1986;12:17-21
4. Askenase PW, Metzler CM, Gershon RK. Localization of leucocytes in sites of delayed-type hypersensitivity and in lymph nodes: Dependence on vasoactive amines. Immunology. 1982;47:239-246
5. Maeda H, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Critical reviews in therapeutic drug carrier systems. 1989;6:193-210
6. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387-6392
7. Maeda H. Smancs and polymer-conjugated macromolecular drugs: Advantages in cancer chemotherapy. Advanced drug delivery reviews. 2001;46:169-185
8. Muggia FM. Doxorubicin-polymer conjugates: Further demonstration of the concept of enhanced permeability and retention. Clin Cancer Res. 1999;5:7-8
9. Maeda H. The enhanced permeability and retention (epr) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 2001;41:189-207
10. Weidner C, Klede M, Rukwied R, Lischetzki G, Neisius U, Skov PS, Petersen LJ, Schmelz M. Acute effects of substance p and calcitonin gene-related peptide in human skin - a microdialysis study. J Invest Dermatol. 2000;115:1015-1020
11. Mangialardi G, Monopoli A, Ongini E, Spinetti G, Fortunato O, Emanueli C, Madeddu P. Nitric oxide-donating statin improves multiple functions of circulating angiogenic cells. Brit J Pharmacol. 2011;164:570-583
12. Yoon S, Shin C, Park HY, Moon J, Kim E, Kim HT, Min J, Jo SA, Jo I. Endothelial nitric oxide synthase gene is associated with vessel stenosis in korean population. Clin Chim Acta. 2005;353:177-185
13. Wu J, Sawa, T., Akaike, T., Maeda, H. Peroxynitrite and oxygen radical species: Roles in epr effect and the implication for solid tumor therapy. 1998;Symposium Abstract 3rd International Symposium on Polymer Therapeutics, London:53
14. Murohara T, Horowitz JR, Silver M, Tsurumi Y, Chen D, Sullivan A, Isner JM. Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation. 1998;97:99-107
15. Ferrara N. Vegf: An update on biological and therapeutic aspects. Current opinion in biotechnology. 2000;11:617-624
16. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth-factor is a secreted angiogenic mitogen. Science. 1989;246:1306-1309
17. Ryan IKBaGB. The effect of histamine and serotomin on rat mesenteric blood vessels in vivo. Increased Vascular Permeability. 1969;55:329-347
18. Majno G. Citation classic - studies on inflammation .1. The effect of histamine and serotonin on vascular-permeability - an electron-microscopic study. Cc/Life Sci. 1981:20-20
19. Toschi E, Barillari G, Sgadari C, Bacigalupo I, Cereseto A, Carlei D, Palladino C, Zietz C, Leone P, Sturzl M, Butto S, Cafaro A, Monini P, Ensoli B. Activation of matrix-metalloproteinase-2 and membrane-type-1-matrix-metalloproteinase in endothelial cells and induction of vascular permeability in vivo by human immunodeficiency virus-1 tat protein and basic fibroblast growth factor. Molecular biology of the cell. 2001;12:2934-2946
20. Owen JL, Iragavarapu-Charyulu V, Gunja-Smith Z, Herbert LM, Grosso JF, Lopez DM. Up-regulation of matrix metalloproteinase-9 in t lymphocytes of mammary tumor bearers: Role of vascular endothelial growth factor. J Immunol. 2003;171:4340-4351
21. Rosenberg GA, Cunningham LA, Wallace J, Alexander S, Estrada EY, Grossetete M, Razhagi A, Miller K, Gearing A. Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: Activation of mmp-9 linked to stromelysin-1 and microglia in cell cultures. Brain research. 2001;893:104-112
22. Gasche Y, Fujimura M, Morita-Fujimura Y, Copin JC, Kawase M, Massengale J, Chan PH. Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: A possible role in blood-brain barrier dysfunction. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 1999;19:1020-1028
23. Rosenberg GA. Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol. 2009;8:205-216
24. Wu J, Akaike T, Hayashida K, Okamoto T, Okuyama A, Maeda H. Enhanced vascular permeability in solid tumor involving peroxynitrite and matrix metalloproteinases. Jpn J Cancer Res. 2001;92:439-451
25. Reyes R, Guo M, Swann K, Shetgeri SU, Sprague SM, Jimenez DF, Barone CM, Ding Y. Role of tumor necrosis factor-alpha and matrix metalloproteinase-9 in blood-brain barrier disruption after peripheral thermal injury in rats. Journal of neurosurgery. 2009;110:1218-1226
26. McColl BW, Rose N, Robson FH, Rothwell NJ, Lawrence CB. Increased brain microvascular mmp-9 and incidence of haemorrhagic transformation in obese mice after experimental stroke. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2010;30:267-272
27. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nature reviews. Cancer. 2002;2:161-174
28. Kolaczkowska E, Scislowska-Czarnecka A, Chadzinska M, Plytycz B, van Rooijen N, Opdenakker G, Arnold B. Enhanced early vascular permeability in gelatinase b (mmp-9)-deficient mice: Putative contribution of cox-1-derived pge2 of macrophage origin. Journal of leukocyte biology. 2006;80:125-132
29. Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2007;27:697-709
30. Parks WC, Wilson CL, Lopez-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol. 2004;4:617-629
31. Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G. Biochemistry and molecular biology of gelatinase b or matrix metalloproteinase-9 (mmp-9). Crit Rev Biochem Mol. 2002;37:375-536
32. Behrens J, Mareel MM, Vanroy FM, Birchmeier W. Dissecting tumor-cell invasion - epithelial-cells acquire invasive properties after the loss of uvomorulin-mediated cell cell-adhesion. J Cell Biol. 1989;108:2435-2447
33. Vleminckx K, Vakaet L, Mareel M, Fiers W, Vanroy F. Genetic manipulation of e-cadherin expression by epithelial tumor-cells reveals an invasion suppressor role. Cell. 1991;66:107-119
34. Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Lochner D, Birchmeier W. E-cadherin-mediated cell cell-adhesion prevents invasiveness of human carcinoma-cells. J Cell Biol. 1991;113:173-185
35. Liotta LA. Tumor invasion and metastases-role of the extracellular matrix: Phoads memorial award lecture Cancer Res. 1986;46:1-7
36. Majno G, Joris I. Cells, tissues, and disease : Principles of general pathology. Cambridge, Mass.: Blackwell Science; 1996.
37. Kolaczkowska E, Shahzidi S, Seljelid R, van Rooijen N, Plytycz B. Early vascular permeability in murine experimental peritonitis is comediated by macrophages and mast cells: Resident peritoneal crucial involvement of macrophage-derived cysteinyl-leukotrienes. Inflammation. 2002;26:61-71
38. Kolaczkowska E. Shedding light on vascular permeability during peritonitis: Role of mast cell histamine versus macrophage cysteinyl leukotrienes. Inflamm Res. 2002;51:519-521
39. Benjamim CF, Canetti C, Cunha FQ, Kunkel SL, Peters-Golden M. Opposing and hierarchical roles of leukotrienes in local innate immune versus vascular responses in a model of sepsis. J Immunol. 2005;174:1616-1620
40. Norman MU, Lister KJ, Yang YH, Issekutz A, Hickey MJ. Tnf regulates leukocyte-endothelial cell interactions and microvascular dysfunction during immune complex-mediated inflammation. Brit J Pharmacol. 2005;144:265-274
41. Satake Y, Diaz BL, Balestrieri B, Lam BK, Kanaoka Y, Grusby MJ, Arm JP. Role of group v phospholipase a(2) in zymosan-induced eicosanoid generation and vascular permeability revealed by targeted gene disruption. Journal of Biological Chemistry. 2004;279:16488-16494
42. Dvorak AM. Mast cell-derived mediators of enhanced microvascular permeability, vascular permeability factor/vascular endothelial growth factor, histamine, and serotonin, cause leakage of macromolecules through a new endothelial cell permeability organelle, the vesiculo-vacuolar organelle. Chemical immunology and allergy. 2005;85:185-204
43. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The accp/sccm consensus conference committee. American college of chest physicians/society of critical care medicine. Chest. 1992;101:1644-1655
44. Dehoux MS, Boutten A, Ostinelli J, Seta N, Dombret MC, Crestani B, Deschenes M, Trouillet JL, Aubier M. Compartmentalized cytokine production within the human lung in unilateral pneumonia. Am J Resp Crit Care. 1994;150:710-716
45. Dinarello CA. Interleukin-1 and tumor necrosis factor: Effector cytokines in autoimmune diseases. Seminars in immunology. 1992;4:133-145
46. Dinarello CA. The il-1 family and inflammatory diseases. Clinical and experimental rheumatology. 2002;20:S1-13
47. Jandinski JJ. Osteoclast activating factor is now interleukin-1-beta - historical-perspective and biological implications. J Oral Pathol Med. 1988;17:145-152
48. Dinarello CA. Induction of interleukin-1 and interleukin-1 receptor antagonist. Semin Oncol. 1997;24:981-993
49. Apte RN, Dotan S, Elkabets M, White MR, Reich E, Carmi Y, Song XP, Dvozkin T, Krelin Y, Voronov E. The involvement of il-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metast Rev. 2006;25:387-408
50. Karin WENaM. The wolf in sheep’’s clothing: The role of interleukin-6 in immunity, inflammation and cancer. Trends in Molecular Medicine 2008;14:109-119
51. Ron N. Apte YK, Xiaoping Song, Shahar Dotan, Eli Recih, Moshe Elkabets, Yaron Carmi, Tatyana Dvorkin, Roslayn M. White, Lubov Gayvoronsky, Shraga Segal, Elena Voronov. Effects of micro-environment- and malignant cell-derived interleukin-1 in carcinogenesis, tumour invasiveness and tumour–host interactions. European Journal of Cancer. 2006;42:751-759
52. Akira S, Kishimoto T. Role of interleukin-6 in macrophage function. Current opinion in hematology. 1996;3:87-93
53. Barton BE. The biological effects of interleukin 6. Medicinal research reviews. 1996;16:87-109
54. Gauldie J, Richards C, Harnish D, Lansdorp P, Baumann H. Interferon beta 2/b-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proceedings of the National Academy of Sciences of the United States of America. 1987;84:7251-7255
55. Robert A. Frost GJN, and Charles H. Lang. Lipopolysaccharide and proinflammatory cytokines stimulate interleukin-6 expression in c2c12 myoblasts: Role of the jun nh2-terminal kinase. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology. 2003;285:1153-1164
56. Wang J-H, Lin K-F, Benson SA, Sun S-J, Cheng W-M, Wang S-Y, Shyur L-F, Yang N-S. Tissue array transgene expression system for the evaluation of effect of medicinal herbs on wound-healing. Journal of Genetics and Molecular Biology. 2003;14:133-144
57. Chiu SC, Tsao SW, Hwang PI, Vanisree S, Chen YA, Yang NS. Differential functional genomic effects of anti-inflammatory phytocompounds on immune signaling. BMC genomics. 2010;11:513
58. Su PF, Staniforth V, Li CJ, Wang CY, Chiao MT, Wang SY, Shyur LF, Yang NS. Immunomodulatory effects of phytocompounds characterized by in vivo transgenic human gm-csf promoter activity in skin tissues. Journal of biomedical science. 2008;15:813-822
59. Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol. 2009;78:539-552
60. Chiu SC, Yang NS. Inhibition of tumor necrosis factor-alpha through selective blockade of pre-mrna splicing by shikonin. Mol Pharmacol. 2007;71:1640-1645
61. Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-m2. Oncogene. 2011;30:4297-4306
62. Lu L, Qin AP, Huang HB, Zhou P, Zhang CY, Liu NN, Li SJ, Wen GM, Zhang CG, Dong WH, Wang XJ, Dou QP, Liu JB. Shikonin extracted from medicinal chinese herbs exerts anti-inflammatory effect via proteasome inhibition. Eur J Pharmacol. 2011;658:242-247
63. Chen X, Oppenheim J, Howard OMZ. Shikonin, a component of antiinflammatory chinese herbal medicine, selectively blocks chemokine binding to cc chemokine receptor-1. Int Immunopharmacol. 2001;1:229-236
64. Andujar I, Recio MC, Bacelli T, Giner RM, Rios JL. Shikonin reduces oedema induced by phorbol ester by interfering with i kappa b alpha degradation thus inhibiting translocation of nf-kappa b to the nucleus. Brit J Pharmacol. 2010;160:376-388
65. Sakaguchi I, Tsujimura M, Ikeda N, Minamino M, Kato Y, Watabe K, Yano I, Kaneda K. Granulomatous tissue formation of shikon and shikonin by air pouch method. Biol Pharm Bull. 2001;24:650-655
66. Mani H, Sidhu GS, Singh AK, Gaddipati J, Banaudha KK, Raj K, Maheshwari RK. Enhancement of wound healing by shikonin analogue 93/637 in normal and impaired healing. Skin Pharmacol Physi. 2004;17:49-56
67. Jeng-Hwan Wang K-FL, Spencer A Benson, Show-Jane Sun, Wei-Ming Cheng, Sheng-Yang Wang, Ning-Sun Yang. Tissue array transgenic expression system for the evaluation of effect of medicinal herbs on wound-healing. Journal of Genetics and Molecular Biology. 2003;14:133-144
68. Chen X, Yang L, Zhang N, Turpin JA, Buckheit RW, Osterling C, Oppenheim JJ, Howard OMZ. Shikonin, a component of chinese herbal medicine, inhibits chemokine receptor function and suppresses human immunodeficiency virus type 1. Antimicrob Agents Ch. 2003;47:2810-2816
69. Wang WJ, Bai JY, Liu DP, Xue LM, Zhu XY. [the antiinflammatory activity of shikonin and its inhibitory effect on leukotriene b4 biosynthesis]. Yao xue xue bao = Acta pharmaceutica Sinica. 1994;29:161-165
70. Wang JP, Kuo SC. Impairment of phosphatidylinositol signaling in acetylshikonin-treated neutrophils. Biochem Pharmacol. 1997;53:1173-1177
71. Cheng YW, Chang CY, Lin KL, Hu CM, Lin CH, Kang JJ. Shikonin derivatives inhibited lps-induced nos in raw 264.7 cells via downregulation of mapk/nf-kappa b signaling. J Ethnopharmacol. 2008;120:264-271
72. Seto Y, Motoyoshi S, Nakamura H, Imuta J, Ishitoku T, Isayama S. Effect of shikonin and its derivatives, pentaacetylated shikonin (mds-004) on granuloma-formation and delayed-type allergy in experimental-animals. Yakugaku Zasshi. 1992;112:259-271
73. Wang JP, Raung SL, Chang LC, Kuo SC. Inhibition of hind-paw edema and cutaneous vascular plasma extravasation in mice by acetylshikonin. Eur J Pharmacol. 1995;272:87-95
74. Tanaka S, Tajima M, Tsukada M, Tabata M. A comparative study on anti-inflammatory activities of the enantiomers, shikonin and alkannin. Journal of natural products. 1986;49:466-469
75. Kawakami N, Koyama Y, Tanaka J, Ohara A, Hayakawa T, Fujimoto S. Inhibitory effect of acetylshikonin on the activation of nadph oxidase in polymorphonuclear leukocytes in both whole cell and cell-free systems. Biol Pharm Bull. 1996;19:1266-1270
76. Staniforth V, Wang SY, Shyur LF, Yang NS. Shikonins, phytocompounds from lithospermum erythrorhizon, inhibit the transcriptional activation of human tumor necrosis factor alpha promoter in vivo. The Journal of biological chemistry. 2004;279:5877-5885
77. Belotti D, Paganoni P, Manenti L, Garofalo A, Marchini S, Taraboletti G, Giavazzi R. Matrix metalloproteinases (mmp9 and mmp2) induce the release of vascular endothelial growth factor (vegf) by ovarian carcinoma cells: Implications for ascites formation. Cancer Res. 2003;63:5224-5229
78. Wilhelm DL. The mediation of increased vascular permeability in inflammation. Pharmacological reviews. 1962;14:251-280
79. Khor YH, Teoh AK, Lam SM, Mo DC, Weston S, Reid DW, Walters EH. Increased vascular permeability precedes cellular inflammation as asthma control deteriorates. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology. 2009;39:1659-1667
80. Shoshani Y, Pe’’er J, Doviner V, Frucht-Pery J, Solomon A. Increased expression of inflammatory cytokines and matrix metalloproteinases in pseudophakic corneal edema. Invest Ophthalmol Vis Sci. 2005;46:1940-1947
81. Neuvians TP, Schams D, Berisha B, Pfaffl MW. Involvement of pro-inflammatory cytokines, mediators of inflammation, and basic fibroblast growth factor in prostaglandin f2alpha-induced luteolysis in bovine corpus luteum. Biology of reproduction. 2004;70:473-480
82. Kirveskari J, Helinto M, Moilanen JA, Paavonen T, Tervo TM, Renkonen R. Hydrocortisone reduced in vivo, inflammation-induced slow rolling of leukocytes and their extravasation into human conjunctiva. Blood. 2002;100:2203-2207
83. Barnes PJ. Anti-inflammatory actions of glucocorticoids: Molecular mechanisms. Clin Sci (Lond). 1998;94:557-572
84. Barnes PJ. Corticosteroids, ige, and atopy. J Clin Invest. 2001;107:265-266
85. Luplertlop N, Misse D, Bray D, Deleuze V, Gonzalez JP, Leardkamolkarn V, Yssel H, Veas F. Dengue-virus-infected dendritic cells trigger vascular leakage through metalloproteinase overproduction. EMBO reports. 2006;7:1176-1181
86. Ho J. Visual histology. The Yale Journal of Biology and Medicine. 1988;61:554
87. Bergman RA, Afifi AK, Heidger PM. Atlas of microscopic anatomy : A functional approach companion to histology and neuroanatomy. Philadelphia: Saunders; 1989.
88. Angelo Agostoni MC, and Wanda Porreca Peripheral edema due to increased vascular permeability: A clinical appraisal lnt J Clin Lab Res. 1992;21:241-246
89. Oschatz C, Maas C, Lecher B, Jansen T, Bjorkqvist J, Tradler T, Sedlmeier R, Burfeind P, Cichon S, Hammerschmidt S, Muller-Esterl W, Wuillemin WA, Nilsson G, Renne T. Mast cells increase vascular permeability by heparin-initiated bradykinin formation in vivo. Immunity. 2011;34:258-268
90. Corry DB, Kiss A, Song LZ, Song L, Xu J, Lee SH, Werb Z, Kheradmand F. Overlapping and independent contributions of mmp2 and mmp9 to lung allergic inflammatory cell egression through decreased cc chemokines. Faseb J. 2004;18:995-997
91. simonen-jokinen t. Gelatinases mmp-9 and mmp-2 as indicators of airway inflammation in horses and calves. 2006;University of Helsinki, Helsinki
92. M. Corbel EBaVL. Role of gelatinases mmp-2 and mmp-9 in tissue remodeling following acute lung injury. Brazilian Journal of Medical and Biological Research 2000;33:749-754
93. Diegelmann RF, Evans MC. Wound healing: An overview of acute, fibrotic and delayed healing. Frontiers in bioscience : a journal and virtual library. 2004;9:283-289
94. Christina H. Stuelten SLK, Adrian Barbul. Progress in the biology and treatment of wounds. E M E R G E N C Y M E D I C I N E & C R I T I C A L C A R E R E V I E W. 2007:36-37
95. Timothy Lee AI. Immunology for 1st year medical students. Copyright 2004, 2007, 2009
96. Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol. 2010;10:427-439
97. Temin HM. Stimulation by serum of multiplication of stationary chicken cells. Journal of cellular physiology. 1971;78:161-&
98. Floyd JD, Nguyen DT, Lobins RL, Bashir Q, Doll DC, Perry MC. Cardiotoxicity of cancer therapy. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2005;23:7685-7696
99. Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug discovery today. 2006;11:812-818
100. MacEwan SR, Callahan DJ, Chilkoti A. Stimulus-responsive macromolecules and nanoparticles for cancer drug delivery. Nanomedicine (Lond). 2010;5:793-806
101. Fang J, Sawa T, Maeda H. Factors and mechanism of "epr" effect and the enhanced antitumor effects of macromolecular drugs including smancs. Advances in experimental medicine and biology. 2003;519:29-49
指導教授 葉靖輝、楊寧蓀
(Ching-Hui Yeh、Ning-Sun Yang)
審核日期 2012-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明