博碩士論文 962404002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.23.102.79
姓名 王亮晴((王亮晴):Lian-Chin Wang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 利用前向式遺傳學從阿拉伯芥辨識出全新之植物耐熱基因及解析其耐熱機轉
(Using a forward genetic approach for the identification of novel heat tolerance determinants and characterization of their protecting mechanisms in Arabidopsis)
相關論文
★ 阿拉伯芥突變種(hit1)之位址定位★ 阿拉伯芥之HIT1蛋白質為酵母菌Vps53p之對應物且能影響植物對高溫及水份逆境之耐受性
★ 阿拉伯芥繫鏈同源蛋白質HIT1對頂端生長之影響及熱耐受基因HIT2之遺傳定位★ 阿拉伯芥hit3遺傳位址定位與HIT1啟動子分析
★ 利用基因功能活化法研究阿拉伯芥乙烯生合成之調控機制★ 阿拉伯芥突變種hit2之位址定位
★ 利用化學遺傳法研究阿拉伯芥 revert to eto1 41 (ret41) 之功能研究★ 阿拉伯芥hit3和et突變種之生理定性及其基因定位
★ 阿拉伯芥囊泡繫鏈因子HIT1在逆境下維持內膜完整性之探討與ret8之基因定位★ 阿拉伯芥HS29之基因定位及ET參與植物耐熱機轉之探究
★ 阿拉伯芥中藉由核運輸接受器HIT2/XPO1A進行核質間運輸以促使植物耐受高溫逆境之專一分子的探索研究★ 阿拉伯芥hs49與78hs突變株之生理定性及其耐熱基因定位
★ 阿拉伯芥HIT4為不同於MOM1的新調節方式調控熱誘導染色質重組並在各個植物生長發育轉換時期表現★ 阿拉伯芥熱誘導性狀突變株R45之基因定位及HSP40參與植物耐熱機轉之探究
★ 阿拉伯芥hit4逆轉株r13及r34之基因定位與r34耐熱機轉之探究★ 蛋白質法尼脂化修飾參與植株耐熱反應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 植物為固著性的生物,無法自行選擇適合的生長環境,因此,植物演化出許多不同的機制以因應不利的生長環境。近年來因溫室效應導致全球氣溫上升,高溫逆境已嚴重影響農作物的品質及產量。了解植物如何抵抗高溫逆境,提高其對高溫的耐受能力,已是改良農作物的生長及產量的重要課題之一。為找出植物負責耐受高溫的遺傳決定因子,我們利用前向式遺傳研究法 (forward genetic approach) 篩選出對高溫不具耐受性之突變株,以基因體定位方式找出突變位址,並進一步研究造成此突變性狀之遺傳因子的功能及生理角色。
hit2即是應用此方法所篩選出的其中一棵突變株,其在正常生長環境下與野生型植株並無明顯差異,但hit2對於長時間高溫及短時間熱休克逆境均會失去耐受能力。此外,hit2對於methyl viologen所造成的氧化逆境及在高溫環境下光所誘發的氧化傷害均比野生型植株有較不耐受性的現象,由此得知,hit2也對氧化逆境過度敏感。經基因遺傳位址定位已知,突變基因為細胞核輸出接受器EXORTEIN1A,其功能為調節蛋白質在細胞核與細胞質之間的進出。由以上的結果顯示,在植物中有特定的細胞核輸出接受器幫助植物抵抗因高溫所誘發的氧化傷害,使其可以耐受高溫的逆境,而此細胞核輸出接受器因突變喪失功能時,並不會影響植物正常的生長與發育。
hit1-1為另一對高溫逆境不具耐受性之阿拉伯芥突變株。此外,hit1-1也會影響花粉管之生長。HIT1會與AtVps52p及AtVps54p有co-localization現象,且HIT1與AtVps52p及AtVps54p均會相互作用,形成類似Golgi associated retrograde protein的複合體,參與囊泡從endosome回至Golgi之間的運輸。實驗結果推測,hit1-1對於高溫的不耐受性,可能是由於細胞膜的完整性受損所導致,並非因高溫引發的過氧化物對細胞膜傷害所造成。此外,hit1-1對於高溫處理持續之時間較為敏感但對於溫度處理之強度影響較不顯著。綜合以上的結果推測,HIT1可能參與調節囊泡運輸進而幫助維持細胞膜的熱穩定性,而使植物可以耐受高溫逆境。
摘要(英) Heat stress is a serious abiotic stress that affects plant survival and crop production. Plants have evolved diverse mechanisms to adapt to stressful conditions. Understanding the heat stress defense mechanisms of plants and enhancing their thermotolerance are critical issues for improving crop production and yield. To identify genetic determinants that are essential for plant heat tolerance, we used a forward genetic approach to isolate and characterize the heat-intolerant mutants.
hit2 was isolated by growth inhibition under sustained high temperature conditions. The basal thermotolerance of hit2 to heat shock was also impaired. Furthermore, the growth and development of hit2 seedlings were more sensitive to inhibition with methyl viologen than those of wild-type seedlings, and the survival rate of hit2 seedlings in response to heat stress was affected by light exporsure, suggesting that hit2 is also hypersensitive to oxidative stress. The mutated locus was mapped to EXPORTIN 1A, which encodes a nuclear export receptor. These results demonstrated that a nuclear transport receptor that regulates nucleo-cytoplasmic trafficking is not necessary for normal growth and development, but this receptor is vital for plant heat tolerance, in part, by mediating the protection of plants against heat-induced oxidative stress.
hit1-1 is another heat-intolerant mutant of Arabidopsis. HIT1 encodes a homolog of the yeast VPS53p protein that mediates the recognition between vesicles in retrograde trafficking and the late Golgi. HIT1 can interact with AtVPS52 and AtVPS54 to form the Golgi-associated retrograde protein complex. Mutations of HIT1 led to reduced pollen tube length and plasma membrane thermostability. Furthermore, hit1-1 was hypersensitive to long-term heat stress but not to sudden heat shock. This phenomenon correlates with the known effect of impaired membrane remodeling. These results imply that HIT1 participates in the vesicle trafficking required for pollen tube elongation and the thermal adaptation of the plasma membrane in response to long-term heat stress.
關鍵字(中) ★ 耐熱基因
★ 阿拉伯芥
關鍵字(英) ★ heat tolerance
★ Arabidopsis
論文目次 Table of contents
摘要 i
Abstract ii
誌謝 iii
Table of contents iv
List of Tables v
List of Figures vi
List of Supplementary data vii
Chapter 1 Introduction 1
Chapter 2 Isolation and characterization of the Arabidopsis hit2 mutant reveals the essential role of the nuclear export receptor XPO1A in plant heat tolerance 7
2-1 Background 8
2-2 Materials and Methods 10
2-3 Results 13
2-4 Discussion 17
Chapter 3 Arabidopsis HIT1, a putative homolog of yeast tethering protein Vps53p, is required for pollen tube elongation 22
3-1 Background 23
3-2 Materials and methods 24
3-3 Results 27
3-4 Discussion 29
Chapter 4 Involvement of the Arabidopsis HIT1/AtVPS53 tethering protein homolog in the acclimation of the plasma membrane to heat stress 33
4-1 Background 34
4-2 Materials and methods 37
4-3 Results 42
4-4 Discussion 47
References 52
Supplementary data 85
參考文獻 References
Adachi Y and Yanagida M. 1989. Higher order chromosome structure is affected by cold-sensitive mutations in a Schizosaccharomyces pombe gene crm1+, which encodes a 115-kD protein preferentially localized in the nucleus and its periphery. J Cell Biol. 108, 1195–1207.
Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait BT. 2007. The molecular architecture of the nuclear pore complex. Nature 450, 695–701.
Alfonso M, Yruela I, Almarcegui S, Torrado E, Perez MA, Picorel R. 2001. Unusual tolerance to high temperatures in a new herbicide-resistant D1 mutant from Glycin max (L.) Merr. Cell cultures deficient in fatty acid desaturation. Planta 212, 573–582.
Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H. 2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657.
Arnaoutov A, Azuma Y, Ribbeck K, Joseph J, Boyarchuk Y, Karpova T, McNally J, Dasso M. 2005. Crm1 is a mitotic effector of Ran-GTP in somatic cells. Nat Cell Biol.7, 626–632.
Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Novel L, Port M, Scharf KD. 2004. Heat stress response in plants: a complex game with chaperones and more than 20 heat stress transcription factors. Journal of Biosciences 29, 471–487.
Bell CJ and Ecker JR. 1994. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19, 137–144.
Benning C. 2009. Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu. Rev. Cell Dev. Biol. 25, 71–79.
Blanvillain R, Boavida LC, McCormick S, Ow DW. 2008. EXPORTIN1 genes are essential for development and function of the gametophytes in Arabidopsis thaliana. Genetics 180, 1493–1500.
Blanvillain R and OW D. 2004. Arabidopsis OXS2 is a transcription factor in the oxidative stress response. Meeting Abstract of The 2004 Annual Meeting of the American Society of Plant Biologists. July 24–28, Lake Buena Vista, FL, USA.
Blokhina O, Virolainen E, Fagerstedt KV. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann bot-london 91, 179–194.
Bonifacion JS and Hierro A. 2011. Transport according to GARP: receiving retrograde cargo at the trans-Golgi network. Trends in Cell Biol. 21, 159-167.
Bracha-Drori K, Shichrur K, Katz A, Oliva M, Angelovici R, Yalovsky S, Ohad N. 2004. Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. Plant J. 40, 419–427.
Browse J, Warwick N, Somerville CR, Slack CR. 1986. Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the ‘16:3’ plant Arabidopsis thaliana. Biochem J. 235, 25–31.
Cai H, Reinisch K, Ferro-Novick S. 2007. Coats, Tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12, 671–682.
Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT. 2007. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol. 143, 251–262.
Clough SJ and Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.
Cole RA, Synek L, Zarsky V, Fowler JE. 2005. SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol 138, 2005–2018.
Conibear E, Cleck JN, Stevens TH. 2003. Vps51p mediates the association of the GARP (Vps52/53/54) complex with the late Golgi t-SNARE Tlg1p. Mol Biol Cell 14, 1610–1623.
Conibear E and Stevens TH. 2000. Vps52p, Vps53p, and Vps54p form a novel multisubunit complex required for protein sorting at the yeast late Golgi. Mol Biol Cell 11, 305–323.
Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R. 2005. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17, 268–281.
Derksen J, Rutten T, Lichtscheidl IK, Dewin AHN, Pierson ES, Rongen G. 1995. Quantitative analysis of the distribution of organelles in tobacco pollen tubes: implications for exocytosis and endocytosis. Protoplasma 188, 267–276.
Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS. 2006 Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 45, 616–629.
Edlund AF, Swanson R, Preuss D. 2004. Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16, S84–S97.
Elias M, Drdova E, Ziak D, Bavlnka B, Hala M, Cvrckova F, Soukupova H, Zarsky V. 2003. The exocyst complex in plants. Cell Biol. Int. 27, 199–201.
Falcone DL, Ogas JP, Somerville CR. 2004. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol. 4, 17.
Fan LM, Wang YF, Wang H, Wu WH. 2001. In vitro Arabidopsis pollen germination and characterization of the inward potassium currents in Arabidopsis pollen grain protoplasts. J. Exp. Bot. 52, 1603–1614.
Ferguson C, Teeri TT, Siika-aho M, Read SM, Bacic A. 1998. Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum. Planta 206, 452–460.
Ferrando A, Koncz-Kalman Z, Farras R, Tiburcio A, Schell J, Koncz C. 2001. Detection of in vivo protein interactions between Snf1-related kinase subunits with intron-tagged epitope-labelling in plants cells. Nucleic Acids Research 29, 3685–3693.
Fisher RJ, Pevsner J, Burgoyne RDJ. 2001. Control of fusion pore dynamics during exocytosis by munc18. Science 291, 875–878.
Franklin-Tong VE. 1999. Signaling and the modulation of pollen tube growth. Plant Cell 11, 727–738.
Fridmann-Sirkis Y, Kent HM, Lewis MJ, Evans PR, Pelham HR. 2006. Structural analysis of the interaction between the SNARE Tlg1p and Vps51. Traffic 7, 182–190.
Guermonprez H, Smertenko A, Crosnie MT, Durandet M, Vrielynck N, Guerche P, Hussey PJ, Satiat-Jeunemaitre B, Bonhomme S. 2008. The POK/AtVPS52 protein localizes to several distinct post-Golgi compartments in sporophytic and gametophytic cells. J Plant Physiol. 59, 3087–3098.
Haasen D, Kohler C, Neuhaus G, Merkle T. 1999. Nuclear export of proteins in plants: AtXPO1 is the export receptor for leucine-rich nuclear export signals in Arabidopsis thaliana. Plant J. 20, 695–705.
Hamaji K, Nagira M, Yoshida K, Ohnishi M, Oda Y, Uemura T, Goh T, Sato MH, Morita MT, Tasaka M, Hasezawa S, Nakano A, Hara-Nishiumra I, Maeshima M, Fukaki H, Mimura T. 2009. Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis. Plant cell Physiol. 50, 2023–2033.
Heerkoltz D, Doring P, Bonzelius F, Winkelhaus S, Nover L. 2001. The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2. Mol Cell Biol. 21, 1759–1768.
Hepler PK, Vidali L, Cheung AY. 2001. Polarized cell growth in higher plants. Annu. Rev. Cell Dev. Biol. 17, 159–187.
Hutten S and Kehlenbach RH. 2007. CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol. 17, 193–201.
Hwang I and Robinson DG. 2009. Transport vesicle formation in plant cells. Curr Opin Plant Biol.12, 660–669.
Iba K. 2002. Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol. 53, 225–245.
Jahn R, Lang T, Sudhof TC. 2003. Membrane fusion. Cell 112, 519–533.
Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL. 2002. Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 129, 440–450.
Jithesh MN, Prashanth SR, Sivaptakash KR, Parida AK. 2006. Antioxidative response mechanisms in hylophytes: their role in stress defence. J Genetics 85, 237–254.
Johnson-Brousseau SA and McCormick S. 2004. A compendium of methods useful for characterizing Arabidopsis pollen mutants and gametophytically-expressed genes. Plant J. 39, 761–775.
Jouhet J, Marechal E, Block MA. 2007. Glycerolipid transfer for the building of membranes in plant cells. Prog Lipid Res. 46, 37–55.
Jurgens G and Geldner N. 2002. Protein secretion in plants: from the trans-Golgi network to the outer space. Traffic 3, 605–613.
Kipp E. 2008. Heat stress effects on growth and development in three ecotypes of varying latitude of Arabidopsis. Applied ecology and environmental research 6, 1–14.
Konieczny A and Ausubel F. 1993. A procedure for quick mapping of Arabidopsis mutants using ecotype specific markers. Plant J. 4, 403–410.
Konigshofer H, Tromballa HW, Loppert HG. 2008. Early events in signaling high-temperature stress in tobacco BY2 cells involve alterations in membrane fluidity and enhanced hydrogen peroxide production. Plant Cell Environ. 31, 1771–1780.
Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD. 2007. Complexity of the heat stress response in plants. Curr Opin Plant Biol. 10, 310–316.
Koumandou VL, Dacks JB, Coulson RMR, Field MC. 2007. Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evolutionary Biology 7, 29.
Larkindale J, Hall JD, Knight MR, Vierling E. 2005. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol. 138, 882–897.
Larkindale J and Huang B. 2004. Changes of lipid composition and saturation level in leaves and roots for heat-stressed and heat acclimated creeping bentgrass (Agrostis stolonifera). Environ Exp Bot.51, 57–67.
Larkindale J and Knight MR. 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol.128, 682–695.
Latijnhouwers M, Hawes C, Carvalho C. 2005. Holding it all together? Candidate proteins for the plant Golgi matrix. Curr Opin Plant Biol. 8, 1–8.
Lee CF, Pu HY, Wang LC, Sayler RJ, Yeh CH, Wu SJ. 2006. Mutation in a homolog of yeast Vps53p accounts for the heat and osmotic hypersensitive phenotypes in Arabidopsis hit1-1 mutant. Planta 224, 330–338.
Leshem Y, Golani Y, Kaye Y, Levine A. 2010. Reduced expression of the v-SNAREs AtAMP71/AtVAMP7C gene family in Arabidopsis reduces drought tolerance by suppression of abscisic acid-dependent stomatal closure. J Exp Bot. 61, 2615–2622.
Levine A. 2002. Regulation of stress responses by intracellular vesicle trafficking? Plant Physiol Bioch. 40, 531–535.
Li H, Lin Y, Heath RM, Zhu MX, Yang Z. 1999. Control of pollen tube tip growth by a Rop GTPase dependent pathway that leads to tip-localized calcium influx. Plant Cell 11, 1731–1742.
Liu HC, Liao HT, Charng YY. 2011. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ 34, 738-751.
Liu X and Huang B. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Science 40, 503–510.
Lobstein E, Guyon A, Ferault M, Twell D, Pelletier G, Bonhomme S. 2004. The putative Arabidopsis homolog of yeast vps52p is required for pollen tube elongation, localizes to Golgi, and might be involved in vesicle trafficking. Plant Physiol.135, 1480–1490.
Locato V, Gadaleta C, Gara LD, De Pinto MC. 2008. Production of reactive species and modulation of antioxidant network in response to heat shock: a critical balance for cell fate. Plant Cell Environ. 31, 1606–1619.
Los DA and Murata N. 2004. Membrane fluidity and its roles in the perception of environmental signals. BBA Biomembranes 1666, 142–157.
Lupashin V and Sztul E. 2005. Golgi tethering factors. Biochim Biophys Acta 1744, 325–339.
Mazel A, Leshem Y, Tiwarl BS, Levine A. 2004. Induction of salt and osmotic stress tolerance by overexpression of an intrancellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol. 134, 118–128.
Meier I and Brkljacic J. 2009. The nuclear pore and plant development. Curr Opin Plant Biol.12, 87–95.
Merkle T. 2004. Nucleo-cytoplasmic partitioning of proteins in plants: implications for the regulation of environmental and developmental signaling. Curr Genet. 44, 231–260.
Merkle T. 2009. Nuclear export of proteins and RNA. In: Robinson DG, Meier I, Functional organization of the plant nucleus, Springer Series Plant Cell Monogr. 14, 55–77.
Micheli F. 2001. Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci. 6, 414–419.
Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410.
Mittler R. 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15–19.
Morishita M, Mendonsa R, Wright J, Engebrecht J. 2007. Snc1p v-SNARE transport to the prospore membrane during yeast sporulation is dependent on endosomal retrieval pathways. Traffic 8, 1231–1245.
Murakami Y, Tsuyama M, Kobayashi Y, Kodama H, Iba K. 2000. Trienoic fatty acids and plant tolerance of high temperature. Science 287, 476–479.
Murashige T and Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plantarum 15, 473–497.
Nishi K, Yoshida M, Fujiwara D, Nishikawa M, Horinouchi S, Beppu T. 1994. Leptomycin B targes a regulatory cascade crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J Biol Chem. 269, 6320–6324.
Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S. 2006. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J. 48, 535–547.
Novel L, Kapil B, Doring P, Mishra SK, Ganguli A, Scharf KD. 2001. Arabidopsis and the Hsf world: How many heat stress transcription factors do we need? Cell Stress Chap. 6, 177–189.
Ohlrogge J and Browse J. 1995. Lipid Biosynthesis. Plant Cell 7, 957–970.
Oliviusson P, Heinzerling O, Hillmer S, Hinz G, Tse YC, Jiang L, Robinson DG. 2006. Plant retromer, localized to the prevacuolar compartment and microvesicles in Arabidopsis, may interact with vacuolar sorting receptors. Plant Cell 18, 1239–1252.
Panchuk II, Volkov RA, Schoffl F. 2002. Heat stess- and heat shock transcription factor- dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol. 129, 838–853.
Parton RM, Fisher-Parton S, Watahiki MK, Trewavas AJ. 2001. Dynamics of the apical vesicle accumulation and the rate of growth are related in individual pollen tubes. J. Cell Sci. 144, 2685–2695.
Pearcy RW. 1978. Effect of growth temperature on fatty acid composition of the leaf lipids in Atriplex lentiformis (Torr.) wats. Plant Physiol. 61, 484–486.
Perez-Victoria FJ and Bonifacino JS. 2009. Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-Golgi Network. Mol Cell Biol. 29, 5251–5263.
Perez-Victoria FJ, Mardones GA, Bonifacino JS. 2008. Requirement of the human GARP complex for mannose 6-phosphate-receptor-dependent sorting of cathepsin D to lysomomes. Mol Biol Cell 19, 2350–2362.
Pferrer SR. 1999. Transport-vesicle targeting: tethers before SNAREs. Nat Cell Biol.1, E17–E22.
Procissi A, Guyon A, Pierson ES, Giritch A, Knuiman B, Grandjean O, Tonelli C, Derksen J, Pelletier G, Bonhomme S. 2003. KINKY POLLEN encodes a SABRE like protein required for tip growth in Arabidopsis and conserved among eukaryotes. Plant J. 36, 894–904.
Rizhsky L, Davletova S, Liang H, Mittler R. 2004. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem. 279, 11736–11743.
Robatzek S. 2007. Vesicle trafficking in plant immune responses. Cell Microbiol. 9, 1–8.
Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B. 2003. An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for fl anking sequence tag-based reverse genetics. Plant Mol. Biol. 53, 247–259.
Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu YC, Lee PY, Truong MT, Beals TP, Goldberg RB. 1999. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex. Plant Reprod. 11, 297–322.
Santoni V. 2007. Plant plasma membrane protein extraction and solubilization for proteomic analysis. Method Mol Biol. 335, 93–109.
Schapire AL, Voige B, Jasik J, Rosado A, Lopez-Cobollo R, Menzel D, Salinas J, Mancuso S, Valpuesta V, Baluska F, Botella MA. 2008. Arabidopsis SYNAPTOTAGMIN1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell 20, 3374–3388.
Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkoph B, Weigel D, Lohmann JU. 2005. A gene expression map of Arabidopsis thaliana development. Nature Genet. 37, 501–506.
Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Doring P. 2006. The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol Biol. 60, 759–772.
Siniossoglou S and Pelham HR. 2001. An effector of Ypt6p binds the SNARE Tlg1p and mediates selective fusion of vesicles with late Golgi membranes. EMBO J. 20, 5991–5998.
Smyth DR, Bowman JL, Meyerowitz EM. 1990. Early flower development in Arabidopsis. Plant Cell 2, 755–767.
Sollner TH. 2002. Vesicle tethers promoting fusion machinery assembly. Dev Cell 2, 377–387.
Stade K, Ford CS, Guthrie C, Weis K. 1997. Exportin 1(Crm1p) is an essential nuclear export factor. Cell 90, 1041–1050.
Sterling JD, Quigley HF, Orellana A, Mohnen D. 2001. The catalytic site of the pectin biosynthetic enzyme α-1,4- galacturonosyltransferase is located in the lumen of the Golgi. Plant Physiol. 127, 360–371.
Su K, Bremer DJ, Jeannotte R, Welti R, Yang C. 2009. Membrane lipid composition and heat tolerance in cool-season turfgrasses, including a hybrid bluegrass. J Am Soc Hortic Sci. 134, 511–520.
Sun Y, Mansour M, Crack JA, Gass GL, MacRae TH. 2004. Oligomerization, chaperone activity, and nuclear localization of p26, a small heat shock protein from Artemia franciscana. J Biol Chem. 279, 39999–40006.
Sung DY, Kaplan F, Lee KJ, Guy CL. 2003. Acquired tolerance to temperature extremes. Trends Plant Sci. 8, 179–187.
Sutter JU, Campanoni P, Blatt MR, Paneque M. 2006. Setting SNAREs in a different wood. Traffic 7, 627–638.
Suzuki N and Mittler Ron. 2006. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol Plantarum 126, 45–51.
Sztul E and Lupashin V. 2006. Role of tethering factors in secretory membrane traffic. Am. J. Physiol. Cell Physiol. 290, C11–C26.
Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H. 2010. Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot. 67, 429–443.
Tkach JM and Glover JR. 2008. Nucleocytoplasmic trafficking of the molecular chaperone Hsp104 in unstressed and heat-shocked cells. Traffic 9, 39–56.
Tsou PL, Song W, Ow DW. 2007. OXS1, a conserved eukaryotic HMG-box protein that confers resistance to oxidative stress. Meeting Abstract of The 2007 Annual Meeting of the American Society of Plant Biologists. July 7–12, Chicago, IL, USA.
Tsukahara F and Maru Y. 2004. Identification of novel nuclear export and nuclear localization-related signals in human heat shock cognate protein 70. J Biol Chem. 279, 8867–8872.
Ungermann C and Langosch D. 2005. Functions of SNAREs in intracellular membrane fusion and lipid bilayer mixing. J Cell Sci.118, 3819–3828.
Upchurch RG. 2008. Fatty acid unsaturation, mobilization, and regulation in the response of plant to stress. Biotechnology Letters 30, 967–977.
Vigh L, Maresca B, Harwood JL. 1998. Dose the membrane’s physical stae control the expression of heat shock and other genes? Trends Biochem Sci. 23, 369-374.)
Volkov RA, Panchuk II, Mullineaux PM, Schoffl F. 2006. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol. 61, 733–746.
von Koskull-Doring P, Scharf KD, Nover L. 2007. The diversity of plant heat stress transcription factors. Trends Plant Sci. 12, 452–457.
Wahid A, Gelani S, Ashraf M, Foolad MR. 2007. Heat tolerance in plants: an overview. Environ Exp Bot. 61, 199–233.
Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudia J. 2004. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40, 428–438.
Wang W, Budhu A, Forgues M, Wang XW. 2005. Temporal and spatial control of nucleophosmin by the Ran/Crm1 complex in centrosome duplication. Nat Cell Biol. 7, 823–830.
Wang W, Vinocur B, Altman A. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1–14.
Whyte JR and Munro S. 2002. Vesicle tethering complexes in membrane traffic. J. Cell Sci. 115, 2627–2637.
Witghtman R and Turner S. 2010. Trafficking of the plant cellulose synthase complex. Plant Physiol.153, 427–432.
Wu HC, Hsu SF, Luo DL, Chen SJ, Huang WD, Lur HS, Jinn TL. 2010. Recovery of heat shock-triggered released apoplastic Ca2+ accompanied by pectin methylesterase activity is required for thermotolerance in soybean seedlings. J Exp Bot. 61, 2843–2852.
Wu SJ, Locy RD, Shaw JJ, Cherry JH, Singh NK. 2000. Mutantion in Arabidopsis HIT1 locus causing heat and osmotic hypersensitivity. J. Plant Physiol. 157, 543–547.
Wu SJ, Wang LC, Yeh CH, Lu CA, Wu SJ. 2010. Isolation and characterization of the Arabidopsis hit-intolerant 2 (hit2) mutant reveal the essential role of the nuclear export receptor EXPORTIN1A (XOP1A) in plant heat tolerance. New Phytol.186, 833–842.
Xu C and Huang B. 2008. Root proteomic responses to heat stress in two Agrostis grass species contrasting in heat tolerance. J Plant Physiol. 59, 4183–4194.
Yamazaki T, Kawamura Y, Minami A, Uemura M. 2008. Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via SYNAPTOTAGMIN1. Plant Cell 20, 3389–3404.
Yoo SD, Cho YH, Sheen J. 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocol 2, 1565–1572.
Yu IM and Hughson FM. 2010. Tethering factors as organizers of intracellular vesicular traffic. Annu. Rev. Cell Dev. Biol. 26, 137–156.
Zhang Y, Liu CM, Emons AMC, Ketelaar T. 2010. The plant exocyst. J Integr Plant Biol. 52, 138–146.
Zinn KE, Tunc-Ozdemir M, Harper JF. 2010. Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot. 61, 1959–1968.
Zolov SN and Lupashin V. 2005. Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J Cell Biol. 168, 747–759.
指導教授 吳少傑(Shaw-Jye Wu) 審核日期 2012-4-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明