博碩士論文 982204028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:18.119.121.170
姓名 許永佳(Yung-Chia Hsu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 綠茶表沒食子酸酯型唲茶素酸酯抑制第一型內皮素在短時間和長時間作用於脂肪細胞上的葡萄糖攝入
(Green tea (-)-epigallocatechin gallate inhibits the acute and chronic actions of endothelin-1 on adipocyte glucose uptake.)
相關論文
★ 中華鱉腦垂體甘丙氨激素之研究:cDNA選殖、表現及調控★ 辛基苯酚對3T3-L1脂肪細胞中resistin的調節作用
★ 綠茶表沒食子酸酯型唲茶素酸酯對胰島素刺激前脂肪細胞增生的抑制★ FoxO1 調節抗胰島素激素基因的表現
★ 綠茶表沒食子唲茶素沒食子酸酯受器對於人類乳癌細胞株MCF7生長的影響★ 綠茶表沒食子酸酯型唲茶素酸酯抑制第一型内皮素作用於脂肪細胞上攝入葡萄糖的訊息機制
★ 綠茶表兒茶素藉由microRNA-494路徑改善橫向主動脈繃紮術誘導型小鼠的心臟疾病★ 內皮素誘導前脂肪細胞生長的訊息路徑
★ 綠茶對前脂肪細胞生長的影響★ 綠茶唲茶素對由第一型類胰島素所調節前脂肪細胞生長的影響
★ 綠茶唲茶素對於前脂肪細胞分化的影響★ Cdk2在綠茶唲茶素調節3T3-L1前脂肪細胞的生長和細胞凋亡扮演著必要性的角色
★ 綠茶唲茶素透過MAPK相關途徑抑制3T3-L1前脂肪細胞的生長★ 第一型類胰島素生長因子、綠茶唲茶素及雌性素對3T3-L1脂肪細胞中resistin的基因表達有不同的調節效果
★ 綠茶唲茶素對前脂肪細胞內活性氧及榖胱甘肽的影響★ 胰島素接受器受質在綠茶唲茶素對胰島素刺激前脂肪細胞生長作用中扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討綠茶唲茶素中表沒食子酸酯型唲茶素酸酯(英文為(-)-epigallocatechin gallate,簡寫為EGCG)為是否會調控第一型內皮素(英文為endothelin-1,簡寫為ET-1)在短時間(0.5小時)、中長時間(2小時)和長時間(6小時)刺激脂肪細胞攝入葡萄糖的能力。利用3T3-L1和C3H10T1/2脂肪細胞,實驗中發現,處理2小時的10 μM EGCG能抑制第一型內皮素促進脂肪細胞攝入葡萄糖的能力,並且會抑制第一型內皮素短時間刺激第四型葡萄糖運送蛋白(GLUT-4)從細胞內運送至細胞膜的現象,但EGCG並不影響第一型葡萄糖運送蛋白(GLUT-1)的移動以及第一型葡萄糖運送蛋白和第四型葡萄糖運送蛋白的總蛋白質含量。另外,本研究發現EGCG能抑制第一型內皮素在中長時間和長時間所刺激的葡萄糖攝取以及第一型葡萄糖運送蛋白蛋白質表現量,但並不影響第四型葡萄糖運送蛋白的蛋白質表現量和移動現象。由以上結果說明了,EGCG抑制第一型內皮素在短時間和長時間刺激攝取葡萄糖的能力,可能是分別透過抑制第四型葡萄糖運送蛋白的移動和第一型葡萄糖運送蛋白的蛋白質表現量所導致。進一步的結果發現EGCG能抑制第一型內皮素短時間處理下所刺激的AKT、ERK和STAT-3等訊息分子之磷酸化,並且EGCG也能抑制第一型內皮素在中長時間內所促進的ERK和STAT-3磷酸化現象。有趣的是,長時間的第一型內皮素處理,或者是第一型內皮素和EGCG共同處理,都不會顯著地改變AKT、ERK和STAT-3等蛋白質的磷酸化。此外,當前處理A型內皮素接受器(ETAR)抑制劑BQ-610時,能完全抑制第一型內皮素促進脂肪細胞攝入葡萄糖的能力,並且也能完全抑制第一型內皮素短時間刺激ERK和STAT-3的磷酸化現象。由此可見EGCG會藉由抑制ETAR的下游訊息分子,例如:pAKT、pERK、pSTAT-3,藉此影響第一型內皮素的促進作用。
摘要(英) This study investigated whether green tea (-)-epigallocatechin gallate (EGCG) modulated both acute (0.5 h) and chronic (6 h) effects of ET-1 on glucose uptake in adipocytes. Using the 3T3-L1 and C3H10T1/2 adipocytes and [3H]2-deoxyglucose assay, we found that EGCG at 10 μM for 2 h inhibited the acute effect of ET-1 on adipocyte glucose uptake. EGCG was also found to block the acute action of ET-1 on translocation of the glucose transporter-4 (GLUT-4) from the cytosol to the plasma membrane. However, EGCG did not affect the total levels of GLUT-1 or GLUT-4 proteins and had no effects on GLUT-1 translocation. On the other hand, we observed that EGCG prevented the 2-h and chronic effects of ET-1 on adipocyte glucose uptake and GLUT-1 protein expression. However, EGCG did not alter the total levels of GLUT-4 protein and had no effects on the chronically ET-1 altered GLUT-4 translocation. These data suggest that EGCG mediates the acute and chronic effects of ET-1 on adipocyte glucose uptake via the respective alteration of GLUT-4 translocation and GLUT-1 protein expression. Furthermore, EGCG inhibited the acutely ET-1-stimulated phosphorylations of AKT, ERK and STAT-3 signaling molecules. The 2-h stimulation of ERK and STAT-3 phosphorylation by ET-1 was also inhibited by EGCG treatment. Interestingly, treatment with ET-1 for 6 h in the presence and absence of EGCG did not alter any phosphorylation of AKT, ERK, or STAT-3 proteins. Moreover, pretreatment the ETA receptor antagonist, BQ-610, completely inhibited both acute and 2-h effects of ET-1 on glucose uptake and phosphorylation of ERK and STAT-3 in C3H10T1/2 adipocytes. This suggests that EGCG may inhibit the ET-1 action on adipocyte glucose uptake through a similar way to the ETAR downstream signaling molecules.
關鍵字(中) ★ 綠茶
★ 表沒食子酸酯型兒茶素酸酯
★ 第一型內皮素
★ 脂肪細胞
★ 葡萄糖攝入
★ 葡萄糖運送蛋白
★ 訊息傳導路徑
關鍵字(英) ★ Green tea
★ (-)-epigallocatechin gallate
★ endothelin-1
★ adipocyte
★ glucose uptake
★ glucose transporter
★ signaling pathway
論文目次 中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
縮寫與全名對照 vii
一、前言 1
二、實驗材料與方法 7
三、結果 16
四、討論 24
五、結論 29
六、參考文獻 30
七、圖表 36
八、附錄 64
參考文獻 1.Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T 1988 A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411-415
2.Inoue A, Yanagisawa M, Kimura S, Kasuya Y, Miyauchi T, Goto K, Masaki T 1989 The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc. Natl. Acad. Sci. U S A 86:2863-2867
3.Kozuka M, Ito T, Hirose S, Lodhi KM, Hagiwara H 1991 Purification and characterization of bovine lung endothelin receptor. J. Biol. Chem. 266:16892-16896
4.Idris I, Patiag D, Gray S, Donnelly R 2001 Tissue- and time-dependent effects of endothelin-1 on insulin-stimulated glucose uptake. Biochem. Pharmacol. 62:1705-1708
5.Xion Y, Tanaka H, Richardson JA, Williams SC, Slaughter CA, Nakamura M, Chen JL, Yanagisawa M 2001 Endothelin-1 stimulates leptin production in adipocyte. J. Biol. Chem. 276:28471-28477
6.Wu-Wong JR, Berg CE, Wang J, Chiou WJ, Fissel B 1998 Endothelin stimulates glucose uptake and GLUT4 translocation via activation of endothelin ETA receptor in 3T3-L1 adipocyte. J. Biol. Chem. 274:8103-8110
7.Ishibashi K-I, Imamura T, Sharma PM, Ugi S, Olefsky JM 2000 The acute and chronic stimulatory effects of endothelin-1 on glucose transport are mediated by distinct pathways in 3T3-L1 adipocyte. Endocrinology 141:4623-4628
8.Lüscher TF, Barton M 2000 Endothelins and endothelin receptor antagonists: therapeutic considerations for a novel class of cardiovascular drugs. Circulation. 102:2434-40
9.BC. Coessens 1994 Endothelin: an endothelium-derived vasoactive peptide. J. Reconstr Microsurg. 10:405-10
10.Kao YS, Fong JC 2008 Endothelin-1 induces glut1 transcription through enhanced interaction between Sp1 and NF-κB transcription factors. Cell. Signal. 20:771-778
11.Görlach C, Benyó Z, Wahl M 1998 Endothelin-1-induced contraction in cerebral vessels mediated by phospholipase C/protein kinase C cascade. Kidney Int. Suppl. 1998 67:S224-5
12.Spinella F, Rosano L, Di Castro V, Decandia S, Albini A, Nicotra MR, Natali PG, Bagnato A 2006 Green tea polyphenol epigallocatechin-3-gallate inhibits the endothelin axis and downstream signaling pathways in ovarian carcinoma. Mol. Cancer Ther. 5:1483-1492
13.Juan CC, Chang CL, Lai YH, Ho LT 2005 Endothelin-1 induces lipolysis in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 288:E1146-E1152
14.Bhattacharya I, Ullrich A 2006 Endothelin-1 inhibits adipogenesis: Role of phohphorylation of Akt and ERK 1/2. FEBS Letters 580:5765-5771
15.Kao YS, Fong JC 2008 Endothelin-1 induction of Glut1 transcription in 3T3-L1 adipocytes involves distinct PKCε- and p42/p44 MAPK-dependent pathways. Biochim. Biophys. Acta. 1780:154-159
16.Imamura T, Ishibashi K-I, Dalle S, Ugi S, Olefsky JM 1999 Endothelin-1-induced GLUT4 translocation is mediated via Gαq/11 protein and phosphatidylinositol 3-kinase in 3T3-L1 adipocyte. J. Biol. Chem. 274:33691-33695
17.Fong JC, Kao YS, Tsai HY, Ho LT 2001 Endothelin-1 increases glucose transporter glut1 mRNA accumulation in 3T3-L1 adipocytes by a mitogen-activated protein kinase-dependent pathway. Cell. Signal. 13:491-497
18.Sud N, Black SM 2009 Endothelin-1 impairs nitric oxide signaling in endothelial cells through a protein kinase Cδ-dependent activation of STAT3 and decreased endothelial nitric oxide synthase expression. DNA Cell Biol. 28:543-553
19.McWhinnie R, Pechkovsky DV, Zhou D, Lane D, Halayko AJ, Knight DA, Bai TR 2007 Endothelin-1 induces hypertrophy and inhibits apoptosis in human airway smooth muscle cells. Am. J. Physiol. Lung Cell Mol. Physiol. 292:L278-L286
20.Hsieh CF, Tsuei YW, Liu CW, Kao CC, Shih LJ, Ho LT, Wu LY, Wu CP, Tsai PH, Chang HH, Ku HC, Kao YH 2010 Green tea epigallocatechin gallate inhibits insulin stimulation of adipocyte glucose uptake via the 67-kilodalton laminin receptor and AMP-activated protein kinase pathways. Planta Med. 76:1-5
21.Thielecke F, Boschmann M 2009 The potential role of green tea catechins in the prevention of the metabolic syndrome – A review. Phytochemistry 70:11–24
22.Sabu MC, Smitha K, Kuttan R 2002 Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J. Ethnopharmacol. 83:109-116
23.Morre DJ, Bridge A, Wu LY, Morre DM 2000 Preferential inhibition by (-)-epigallocatechin-3-gallate of the cell surface NADH oxidase and growth of transformed cells in culture. Biochem. Pharmacol. 60:937-946
24.Suganuma M, Okabe S, Sueoka N, Sueoka E, Matsuyama S, Imai K, Nakachi K, Fujiki H 1999 Green tea and cancer chemoprevention. Mutat. Res. 428:339-344
25.Uchida S, Ozaki M, Suzuki K, Shikita M 1992 Radioprotective effects of (-)-epigallocatechin 3-O-gallate (green-tea tannin) in mice. Life Sci. 50:147-152
26.Ku HC, Liu HS, Hung PF, Chen CL, Liu HC, Chang HH, Tsuei YW, Shih LJ, Lin CL, Lin CM, Kao YH 2012 Green tea (-)-epigallocatechin gallate inhibits IGF-1 and IGF-II stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor, but not AMP-activated protein kinase pathway.Mol. Nutr. Food. Res. 56:1-15
27.Wolfram S 2007 Effects of green tea and EGCG on cardiovascular and metabolic health. J. Am. Coll. Nutr. 26:373S-388S
28.Murase T, Misawa K, Haramizu S, Hase T 2009 Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway. Biochem. Pharmacol. 78:78-84
29.Ku HC, Chang HH, Liu HC, Hsiao CH, Lee MJ, Hu YJ, Hung PF, Liu CW, Kao YH 2009 Green tea (-)-epigallocatechin gallate inhibits insulin stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway. Am. J. Physiol. Cell Physiol. 297:C121–C132
30.Liu HS, Chen YH, Hung PF, Kao YH 2006 Inhibitory effect of green tea (-)-epigallocatechin gallate on resistin gene expression in 3T3-L1 adipocytes depends on the ERK pathway. Am. J. Physiol. Endocrinol. Metab. 290:E273-E281
31.Ueda M, Furuyashiki T, Yamada K, Aoki Y, Sakane I, Fukuda I, Yoshida K-I, Ashida H 2010 Tea catechins modulate the glucose transport system in 3T3-L1 adipocytes. Food Funct. 1:167-173
32.Nomura M, Takahashi T, Nagata N, Tsutsumi K, Kobayashi S, Akiba T, Yokogawa K, Moritani S, Miyamoto K-I 2008 Inhibitory mechanisms of flavonoids on insulin-stimulated glucose uptake in MC3T3-G2/PA6 adipose cells. Biol. Pharm. Bull. 31:1403-1409
33.Augustin R 2010 The protein family of glucose transport facilitators: It’s not only about glucose after all. IUBMB Life 62: 315–333
34.Bucci D, Rodriguez-Gil J E, Vallorani C, Spinaci M, Galeati G, Tamanini C 2011 GLUTs and Mammalian Sperm Metabolism. J. Andrology 32:348-355
35.Mueckler M 1994 Facilitative glucose transporters. Eur. J. Biochem. 219:713-725
36.Illsley NP 2000 Glucose transporters in the human placenta. Placenta 21:14–22
37.Garcia de Herreros A, Birnbaum MJ 1989 The regulation by insulin of glucose transporter gene expression in 3T3-L1 adipocyte. J. Biol. Chem. 264:9885-9890
38.Elmendorf JS 2002 Signals that regulate GLUT4 translocation. J. Membr. Biol. 190:167-174
39.Ishiki M, Klip A 2005 Minireview: Recent developments in the regulation of glucose transporter-4 traffic: New signals, locations, and partners. Endocrinology 146:5071-5078
40.Larance M, Ramm G, James DE 2008 The GLUT4 code. Mol. Endocrinol. 22:226-233
41.Thorens B, Mueckler M 2010 Glucose transporters in the 21st Century. Am. J. Physiol. Endocrinol. Metab. 298: E141–E145
42.Doege H, Bocianski A, Joost HG, Schurmann A 2000 Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes. Biochem. J. 350: 771–776
43.Coucke PJ, Willaert A, Wessels MW, Callewaert B, Zoppi N, De Backer J, Fox JE, Mancini GM, Kambouris M, Gardella R, Facchetti F, Willems PJ, Forsyth R, Dietz HC, Barlati S, Colombi M, Loeys B, De Paepe A 2006 Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat. Genet. 38:452–457
44.Ducluzeau PH, Fletcher LM, Vidal H, Laville M, Tavare JM 2002 Molecular mechanisms of insulin-stimulated glucose uptake in adipocytes. Diabetes Metab. 28:85-92
45.TokudaH, Takai S, Hanai Y, Matsushima-Nishiwaki R, Hosoi T, Harada A, Ohta T, Kozawa O 2007 (-)-Epigallocatechin gallate suppresses endothelin-1-induced interleukin-6 synthesis in osteoblasts: Inhibition of p44/p42 MAP kinase activation. FEBS Letters 581:1311-1316
46.Odriozola L, Singh, Hoang, Chan AM 2009 Regulation of PTEN activity by its carboxyl-terminal autoinhibitory domain. J. Biol. Chem. 282:23306–23315
47.Binelli M, Subramaniam P, Diaz T, Johnson GA, Hansen TR, Badinga L, Thatcher WW 2001Bovine interferon-t stimulates the janus kinase-signal transducer and activator of transcription pathway in bovine endometrial epithelial cells. Biology of reproduction 64:654–665
48.Piper RC, Hess LJ, James DE 1991 Differential sorting of two glucose transporters expressed in insulin-seneitive cells. Am. J. Physiol. Cell Physiol. 260:C570-C580
指導教授 高永旭(Yung-Hsi Kao) 審核日期 2012-5-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明