博碩士論文 982204011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.144.189.177
姓名 馬兆駿(Chao-Chun Ma)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 尋找小鼠抗胰島素激素基因驅動子上 FOXO3 的結合位
(A search for the FOXO3-binding site of mouse resistin promoter)
相關論文
★ 中華鱉腦垂體甘丙氨激素之研究:cDNA選殖、表現及調控★ 辛基苯酚對3T3-L1脂肪細胞中resistin的調節作用
★ 綠茶表沒食子酸酯型唲茶素酸酯對胰島素刺激前脂肪細胞增生的抑制★ FoxO1 調節抗胰島素激素基因的表現
★ 綠茶表沒食子唲茶素沒食子酸酯受器對於人類乳癌細胞株MCF7生長的影響★ 綠茶表沒食子酸酯型唲茶素酸酯抑制第一型内皮素作用於脂肪細胞上攝入葡萄糖的訊息機制
★ 綠茶表兒茶素藉由microRNA-494路徑改善橫向主動脈繃紮術誘導型小鼠的心臟疾病★ 內皮素誘導前脂肪細胞生長的訊息路徑
★ 綠茶對前脂肪細胞生長的影響★ 綠茶唲茶素對由第一型類胰島素所調節前脂肪細胞生長的影響
★ 綠茶唲茶素對於前脂肪細胞分化的影響★ Cdk2在綠茶唲茶素調節3T3-L1前脂肪細胞的生長和細胞凋亡扮演著必要性的角色
★ 綠茶唲茶素透過MAPK相關途徑抑制3T3-L1前脂肪細胞的生長★ 第一型類胰島素生長因子、綠茶唲茶素及雌性素對3T3-L1脂肪細胞中resistin的基因表達有不同的調節效果
★ 綠茶唲茶素對前脂肪細胞內活性氧及榖胱甘肽的影響★ 胰島素接受器受質在綠茶唲茶素對胰島素刺激前脂肪細胞生長作用中扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 抗胰島素激素(resistin)是一種由脂肪組織所分泌的荷爾蒙,會阻抗胰島素的作用及脂肪細胞的分化,並會受到許多的轉錄因子所調節。為了充分地瞭解 FOXO3 轉錄因子在脂肪細胞內調節該激素基因的表現,本論文初步先找尋在抗胰島素激素驅動子上 FOXO3 的結合位。經由凝膠遷移滯後技術分析,結果發現 glutathione-S-transferase-FOXO3 融合蛋白會直接與抗胰島素激素驅動子裡分別位於 -3439 ~ -3377 bp 、 -3304 ~ -3255 bp 、 -3254 ~ -3205 bp 、 -2700 ~ -2615 bp 、 -2561 ~ -2480 bp 、 -2479 ~ -2397 bp 、 -2074 ~ -1985 bp 、 -1984 ~ -1895 bp 、 -1894 ~ -1805 bp 、 -1804 ~ -1715 bp 、 -1504 ~ -1405 bp 、 -1404 ~ -1285 bp 、 -1054 ~ -955 bp 、 -954 ~ -855 bp 以及 -838 ~ -759 bp等多個核苷酸區域相結合。在競爭實驗中也發現位移,加入未帶有放射性的競爭探針後 FOXO3 分別與以上所有的驅動子區域的結合都有減弱的情形,因此更加確認了FOXO3 與抗胰島素激素驅動子為專一性的結合。此外, FOXO1 也會直接與上面所列片斷序列中,例如 -3254 ~ -3205 bp 、 -1504 ~ -1405 bp 、 -1404 ~ -1285 bp 、 -1054 ~ -955 bp 以及 -954 ~ -855 bp 等五個驅動子區域相結合,但其它與 FOXO3 相結合的區域,並沒有發現有 FOXO1 的結合位。進一步利用染色質免疫沉澱分析法和 C3H10T1/2 細胞株,也發現在第四天及第六天分化中脂肪細胞, FOXO3 蛋白質會直接與位於抗胰島素激素驅動子上的核苷酸序列,例如 -3444 ~ -3315 bp 、 -3354 ~ -3155 bp 、 -2799 ~ -2615 bp 、 -2571 ~ -2380 bp 、 -2074 ~ -1895 bp 、 -1894 ~ -1705 bp 、 -1558 ~ -1385 bp 、 -1404 ~ -1285 bp 、 1104 ~ -925 bp 以及 -954 ~ -724 bp 等區域相結合,但在前脂肪細胞及已分化脂肪細胞內, FOXO3 並未與這些區域相結合,顯示 FOXO3 與抗胰島素激素驅動子之間的結合力會隨著細胞分化的程度而有變化。綜合以上的結果,本論文的結論是 FOXO3 轉錄因子會直接與多重區域之抗胰島素激素驅動子相結合,其結合區域有同於或異於 FOXO1 結合區域。
摘要(英) Resistin is known as an adipose tissue-specific secretory hormone that can cause insulin resistance and inhibit adipocyte differentiation. It can be regulated by many transcriptional factors. To fully understand the regulation of resistin gene expression by FOXO3 transcription factor in adipocytes, we initially searched the FOXO3-binding site in the resistin gene promoter in vitro and in vivo. An in vitro analysis of electrophoretic mobility shift assay (EMSA) showed that glutathione-S-transferase-FOXO3 (GST-FOXO3) fusion protein could directly bind several nucleotide regions of the resistin promoter, including -3439~3377, -3304~-3255, -3254~-3205, -2700~-2615, -2561~-2480, -2479~-2397, -2074~-1985, -1984~-1895, -1894~-1805, -1804~-1715, -1504~-1405, -1404~-1285, -1054~-955, -954~-855, and -838~-759 bp. The binding specificity was confirmed by an EMSA competition experiment since the added competitive probe blocked the binding of GST-FOXO3 to each individual resistin promoter region. In contrast, GST-FOXO1 fusion protein could directly bind the nucleotide regions of resistin promoter at -3254~-3205, -1504~-1405, -1404~-1285, -1054~-955, and -954~-855 bp, but not at other FOXO3-binding regions. Chromatin Immunoprecipitation (ChIP) assay indicated that the fourth day and the sixth day of differentiating C3H10T1/2 adipocytes, but not preadipocytes or differentiated adipocytes, exhibited the strong binding of the endogenous FOXO3 protein to the following nucleotide regions of resistin promoter: -3444~-3315, -3354~-3155, -2799~-2615, -2571~-2380, -2074~-1895, -1894~-1705, -1558~-1385, -1404~-1285, -1104~-925, and -954~-724 bp. Consistent with the in vitro EMSA findings, these ChIP data suggest that the binding of FOXO3 to resistin promoter varies with the developmental status of fat cells. We also conclude that multiple FOXO3-binding sites are located on mouse resistin promoter, and some of these nucleotide positions are the FOXO1-binding site as well.
關鍵字(中) ★ 尋找小鼠抗胰島素激素基因驅動子上結合位 關鍵字(英) ★ mouse resistin promoter
★ FOXO3
論文目次 目錄
壹、中文摘要.........................................................i
貳、英文摘要........................................................ii
参、誌謝............................................................iv
肆、縮寫與全名對照表.................................................v
伍、目錄............................................................vi
陸、正文............................................................1
一、前言..........................................................1
1. 抗胰島素激素.................................................1
2. FOXO3 轉錄因子...............................................4
3. 研究動機與目的...............................................7
二、實驗材料與方法................................................9
1. 實驗材料.....................................................9
2. 細胞株......................................................10
3. 細胞培養....................................................10
4. GST-FOXO3 蛋白質純化........................................11
5. 核內蛋白質萃取(Nuclear extract).............................12
6. 蛋白質濃度定量..............................................13
7. 凝膠遷移滯後實驗(Electrophoretic Mobility Shift Assays).....13
8. Chromatin Immunoprecipitation Assays........................19
三、實驗結果.....................................................24
1. 構築好不同區域片段的小鼠抗胰島素激素驅動子..................24
2. 位於 3~4 kb 之間的小鼠抗胰島素激素驅動子具有 FOXO3 的結合位24
3. 位於 2~3 kb 之間的小鼠抗胰島素激素驅動子具有 FOXO3 的結合位25
4. 位於 1~2 kb 之間的小鼠抗胰島素激素驅動子具有 FOXO3 的結合位26
5. 位於 1 kb 以內的小鼠抗胰島素激素驅動子具有 FOXO3 的結合位...26
6. 競爭實驗證實 FOXO3 蛋白與小鼠抗胰島素激素驅動子相結合.......27
7. 利用核蛋白證實 FOXO3 在生理環境之下會與小鼠抗胰島素激素驅動子相結合.......................................................29
8. 比較小鼠抗胰島素激素驅動子上面的 FOXO3 與 FOXO1 結合位的差.29
9. 利用 ChIP Assay 確認在 C3H10T1/2 脂肪細胞內 FOXO3 會與抗胰島素激素驅動子相結合............................................30
四、討論.........................................................32
五、結論與未來展望...............................................35
六、圖表.........................................................37
1. 表目錄..................................................viii
2. 圖目錄....................................................ix
七、參考文獻.....................................................82
柒、附錄...........................................................87
參考文獻 1. Seo JB, Noh MJ, Yoo EJ, Park SY, Park J, Lee IK, Park SD, Kim JB. Functional characterization of the human resistin promoter with adipocyte determination- and differentiation-dependent factor 1/sterol regulatory element binding protein 1c and CCAAT enhancer binding protein-alpha. Mol Endocrinol 17:1522-33 , 2003.
2. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS. & Lazar MA. The hormone resistin links obesity to diabetes. Nature 409:307-31 , 2001.
3. Chung SS, Choi HH, Cho YM, Lee HK, Park KS. Sp1 mediates repression of the resistin gene by PPARgamma agonists in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 348:253-8, 2006.
4. Kim KH, Lee K, Moon YS, Sul HS.A cysteine-rich adipose tissue-specific secretory factor inhibits adipocyte differentiation. J Biol Chem. 276:11252-6, 2001.
5. Jung HS, Park KH, Cho YM, Chung SS, Cho HJ, Cho SY, Kim SJ, Kim SY, Lee HK, Park KS. Resistin is secreted from macrophages in atheromas and promotes atherosclerosis. Cardiovasc. Res. 69: 76–85, 2006.
6. Rajala MW, Obici S, Scherer PE, Rossetti L. Adipose-derived resistin and gut-derived resistin-like molecule-beta selectively impair insulin action on glucose production. J. Clin. Invest. 111: 225–230, 2003.
7. Satoh H, Nguyen MT, Miles PD, Imamura T, Usui I, Olefsky JM. Adenovirus-mediated chronic “hyper-resistinemia” leads to in vivo insulin resistance in normal rats. J. Clin. Invest. 114, 224–231, 2004.
8. Rangwala SM, Rich AS, Rhoades B, Shapiro JS, Obici S, Rossetti L, Lazar MA. Abnormal glucose homeostasis due to chronic hyperresistinemia. Diabetes 53: 1937–1941, 2004.
9. Graveleau C, Zaha VG, Mohajer A, Banerjee RR, Dudley-Rucker N, Steppan CM, Rajala MW, Scherer PE, Ahima RS, Lazar MA, Abel ED. Mouse and human resistins impair glucose transport in primary mouse cardiomyocytes, and oligomerization is required for this biological action. J. Biol. Chem. 280: 31679–31685, 2005.
10. Banerjee RR, Lazar MA. Resistin: molecular history and prognosis. J Mol Med 81:218-26, 2003.
11. Lehrke M, Reilly MP, Millington SC, Iqbal N, Rader DJ, Lazar MA. An inflammatory cascade leading to hyper-resistinemia in humans. PLoS Med. 1: e45, 2004.
12. Banerjee RR, Rangwala SM, Shapiro JS, Rich AS, Rhoades B, Qi Y, Wang J, Rajala MW, Pocai A, Scherer PE, Steppan CM, Ahima RS, Obici S, Rossetti L, Lazar MA. Regulation of fasted blood glucose by resistin. Science 303:1195–1198, 2004.
13. Steppan CM, Wang J, Whiteman EL, Birnbaum MJ, Lazar MA. Activation of SOCS-3 by resistin. Mol. Cell.Biol. 25, 1569–1575, 2005.
14. Calabro P, Samudio I, Willerson JT, Yeh ET. Resistin promotes smooth muscle cell proliferation through activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase pathways. Circulation. 110:3335-40, 2004.
15. Chen C, Jiang J, Lü JM, Chai H, Wang X, Lin PH, Yao Q. Resistin decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 299: H193–201, 2010.
16. Shen YH, Zhang L, Gan Y, Wang X, Wang J, LeMaire SA, Coselli JS, Wang XL. Up-regulation of PTEN (phosphatase and tensin homolog deleted on chromosome ten) mediates p38 MAPK stress signal-induced inhibition of insulin signaling A cross-talk between stress signaling and insulin signaling in resistin-treated human endothelial cells. J. Biol. Chem. 281: 7727–7736, 2006.
17. Chen C, Jiang J, Lü JM, Chai H, Wang X, Lin PH, Yao Q. Resistin decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 299: H193–201, 2010.
18. Choi a K.C., Lee a S.Y., Yoo a H.J., Ryu a O.H., Lee a K.W., Kim b S.M.,Baik a S.H., Choi a K.M.. Effect of PPAR-δ agonist on the expression of visfatin, adiponectin, and resistin in rat adipose tissue and 3T3-L1 adipocytes Biochemical and Biophysical Research Communications. 357:62–67. 2007.
19. Shu-Ya Yang. The forkhead transcription factor FOXO1 stimulates activity of mouse resistin gene promoter. 2010.
20. Weigel D, Jürgens G, Küttner F, Seifert E, Jäckle H. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell. 57:645-58, 1989.
21. Tsai KL, Sun YJ, Huang CY, Yang JY, Hung MC, Hsiao CD. Crystal structure of the human FOXO3a-DBD/DNA complex suggests the effects of post-translational modification. Nucleic Acids Res. 35:6984-94. 2007.
22. Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 117:421-6, 2004.
23. Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EW, Burgering BM, Raaijmakers JA, Lammers JW, Koenderman L, Coffer PJ. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol Cell Bio. 20:9138-48, 2000.
24. Jacobs KM, Pennington JD, Bisht KS, Aykin-Burns N, Kim HS, Mishra M, Sun L, Nguyen P, Ahn BH, Leclerc J, Deng CX, Spitz DR, Gius D. SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int J Biol Sci. 4:291-9, 2008
25. Dijkers PF, Medema RH, Lammers JW, Koenderman L, Coffer PJ. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol. 10:1201-4, 2000.
26. Bakker WJ, Blázquez-Domingo M, Kolbus A, Besooyen J, Steinlein P, Beug H, Coffer PJ, Löwenberg B, von Lindern M, van Dijk TB. FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1. J Cell Biol. 164:175-84, 2004.
27. Tran H, Brunet A, Grenier JM, Datta SR, Fornace AJ Jr, DiStefano PS, Chiang LW, Greenberg ME. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science. 296(5567):530-4, 2002.
28. Barthel A, Schmoll D, Unterman TG. FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab. 16:183-9, 2005.
29. Jagani Z, Singh A, Khosravi-Far R. FoxO tumor suppressors and BCR-ABL-induced leukemia: a matter of evasion of apoptosis. Biochim Biophys Acta. 1785:63-84, 2008.
30. Ji-Wet Liu. Studies on the regulation and action of resistin hormone. 2012.
31. Chia-Ying Chien. Developing a reprogramming method for generating safe induced pluripotent stem cells. 2012.
32. Hsin-Yu Chang. The Interaction between PGC-1α and Stra13. 2010.
33. Sheng-Pin Hsiao. The modulation of myogenic regulatory factor transactivation activity by Bhlhe 40, 2011.
34. Yen-Hung Chen. Expression of resistin gene in 3T3-L1 adipocyte is differently regulated by IGF-1, EGCG, and estrogen. 2004.
35. Nadal A, Marrero PF, Haro D. Down-regulation of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by insulin: the role of the forkhead transcription factor FKHRL1. Biochem J. 366:289-97, 2002.
指導教授 高永旭(Yung-Hsi Kao) 審核日期 2012-6-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明