以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:59 、訪客IP:18.219.127.59
姓名 鄭勢嚴(Shih-yen Cheng) 查詢紙本館藏 畢業系所 光電科學與工程學系 論文名稱 以飛秒雷射雙光子聚合光波導及反射面
(The Fabrication of Optical Waveguide and Micro-Reflectors based on Femtosecond Two Photon Polymerization Technique)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本研究以Light tools光學模擬軟體對於不同角度反射面的光連結架構進行模擬,發現當斜面角度為43度到46.5度時,由面射型雷射光源至光偵測器的能量傳輸效率高於80%。其次針對不同半徑的圓弧反射面進行模擬,由結果可知圓弧面的最大反射效率相較於平面反射面可提升10%。在實驗方面,使用鎖模鈦藍寶石飛秒雷射在高分子材料中引發雙光子吸收效應聚合製作斜面微結構。藉由物鏡離焦平面的距離改變照射至光阻的光點強度分佈,成功製作出43度的反射斜面。使用近場掃描光學顯微鏡對於製作出的斜面結構進行表面粗糙度量測,確認其表面平滑度可達35nm(≦λ/10)足夠做為光學等級反射面。最後對於結構進行光場量測,藉反射光場的強度分佈變化來判定所製作的斜面具有匯聚光束的效果。
摘要(英) In this study, optical interconnects with various reflection angles are simulated by ray-tracing based software- Light toolsTM. It is found that the transmission efficiency from the vertical cavity surface emitting laser (VCSEL) to the photodiode (PD) can be higher than 80% as the angle of the reflector is within 43 degree to 46.5 degree. Next, the simulation was carried out for curved reflectors with various radii. Compared to flat reflector, the maximum reflection efficiency can be improved by 10%. Experimentally, mode-locked Titanium-Sapphire laser was used for the fabrication of the slanted structures basing on two-photon absorption polymerization technique. By varying the defocusing length so as to change the intensity distribution on photo-resist, a reflecting surface of 43 degree is successfully fabricated. Scanning near-field optical microscope (SNOM) measurement shows that the surface roughness is less than 35nm (≦λ/10), demonstrating the capability of optical-grade reflecting surface. The intensity distribution of the reflected light confirms the focusing effect of the fabricated surface.
關鍵字(中) ★ 飛秒雷射
★ 雙光子聚合
★ 反射面
★ 光連結關鍵字(英) ★ reflector
★ optical interconnect
★ two photon polymerization
★ femtosecond laser論文目次 目錄
摘要 .................................................................... I
ABSTRACT ............................................................... II
目錄 ................................................................... IV
圖目錄 .................................................................. V
表目錄 ................................................................VIII
第1章、 緒論 .......................................................... 1
1-1前言 ................................................................ 1
1-2光連結技術 .......................................................... 1
1-3研究動機 ............................................................ 8
第2章、 模擬與設計 ................................................... 10
2-1不同角度的反射面其穿透率變化 ....................................... 10
2-2設計概念及理論分析 ................................................. 13
2-3雙光子吸收 ......................................................... 16
第3章、 實驗步驟與量測 ............................................... 19
3-1 樣品製備 ........................................................... 19
3-2雷射直寫系統 ....................................................... 20
第4章、 實驗結果與討論 ............................................... 27
4-1改變樣品移動速度 ................................................... 27
4-2改變物鏡與樣品的距離 ............................................... 30
4-3 45度斜面結構製作 .................................................. 38
4-4 表面粗糙度量測 ..................................................... 41
4-5 45度斜面結構的光學量測 ............................................ 43
第5章、 結論與未來展望 ............................................... 47
參考文獻 ............................................................... 48
參考文獻 [1] T.H Maiman, “Stimulated Optical Radiation in Ruby,” Nature 187, pp. 493-494(4736)
[2] M. Schneider, T. Kuhner, J. Mohr, and D. Maas,“Fibers in Printed Circuit Boards With Passively Aligned Coupling,” IEEE, Vol. 28, No. 15, pp.2121-2128(2010)
[3] H.-L. Hsiao, H.-C. Lan, C.-C. Chang, C.-Y. Lee, S.-P. Chen, “Compact and passive-alignment 4-channel × 2.5Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors,” Optics Express, Vol. 17, No. 26, pp.24250-24260(2009)
[4] http://www.intel.com/content/www/us/en/io/thunderbolt/thunderbolt-technology- developer.html
[5] http://www.avagotech.com.tw/pages/en/press/avago_ibm_embedded_optics
[6] Y. Takagi, A. Suzuki, T. Horio, T. Ohno, T. Kojima,“ Low-Loss Chip-to-Chip Optical Interconnection Using Multichip Optoelectronic Package With 40-Gb/s Optical I/O for Computer Applications,” IEEE, Vol.28, No. 20, pp.2956-2963(2010)
[7] T. Ishigure and Y. Nitta, “Polymer optical waveguide with multiple graded index cores for on-board interconnects fabricated using soft-lithography,” Optics Xepress, Vol.18, No.13, pp.14191-14201(2010)
[8] Y. Nasu, M. Kohtoku, Y. Hibino, and Y. Inoue, “Waveguide Interconnection in Silica-Based Planar Lightwave Circuit Using Femtosecond Laser,” IEEE, Vol. 27, No. 18, pp.4033-4039(2009)
[9] Y. Takeyoshi, and T. Ishigure, “High-Density 2 4 Channel Polymer Optical Waveguide With Graded-Index Circular Cores,” IEEE, Vol. 27, No. 14, pp.2852-2861(2009)
[10] J. T. Kim, J. J. Ju, S. Park, M. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Optics Express, Vol. 16, No. 17, pp.13133-13138(2008)
[11] S. H. Hwang, W.-J. Lee, J. W. Lim, K. Y. Jung, and K. S. Cha, and B. S. Rho, “Chip- and board-level optical interconnections using rigid flexible optical electrical printed circuit boards,” Optics Express, Vol. 16, No. 11, pp.8077-8083(2008)
[12] B. S. Rho, S. H. Hwang, J. W. Lim, G. W. Kim, C. H. Cho, and W.-J. Lee* “Intra-system optical interconnection module directly integrated on a polymeric optical waveguide,” Optics Express, Vol. 17, No. 11, pp.1215-1221(2009)
[13] I.-K. Cho , W.-J. Lee , B.-S. Rho , M.-Y. Jeong , “Polymer waveguide with integrated reflector mirrors for an inter-chip link system,” Optics Communications, pp.4906-4909(2008)
[14] B. S. Rho, S. Kang, H. S. Cho, H.-H. Park,“PCB-Compatible Optical Interconnection Using 45 -Ended Connection Rods and Via-Holed Waveguides,” IEEE Xplore, Vol. 22, No. 9, pp.2128-2134(2004)
[15] G. V. Steenberge , P. Geerinck, S. V. Put, J. V. Koetsem, H. Ottevaere, D. Morlion, H. Thienpont, and P. V. Daele,“MT-Compatible Laser-Ablated Interconnections for Optical Printed Circuit Boards,” IEEE, Vol. 22, No. 9, pp.2083-2090(2004)
[16] M. Goppertmayer,“Uber Elementarakte mit zwei Quantensprungen,” Annalen der Physik , Vol.401, pp.273-294,(2006)
[17] W. Kaiser,“Two-photon excitation in CaF2:Eu2+,” Phys. Rev Lett., Vol. 7, pp.229-231,(1961)
[18] B. H. Cumpston, “Two-photon polymerization initiatora for three-dimensional optical data storage and microfabrication,” Nature, Vol. 398,pp.51-54,(1999)
指導教授 戴朝義(Chao-Yi Tai) 審核日期 2012-1-30 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare