博碩士論文 965401005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.191.44.23
姓名 呂啟銘(Chi-Ming Lu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 用於主動式黑白與彩色微膠囊電泳顯示裝置之控制器設計
(A Controller Design for Mono and Color Micro-Capsule Active Matrix Electrophoretic Displays)
相關論文
★ 用於類比/混和訊號積體電路可靠度增強的加壓測試★ 應用於電容陣列區塊之維持比值良率的通道繞線法
★ 高速無進位除法器設計★ 以正交分頻多工系統之同步的高效能內插法技術
★ 增強CMOS鎖相迴路可靠度★ 適用於地面式數位電視廣播系統之平行架 構記憶體式快速傅立葉轉換處理器設計
★ 對於長解碼長度可降低其記憶體使用的低密度同位檢查碼解碼器設計★ 單級降壓式功因修正轉換器之探索
★ 設計具誤差消除機制之串疊式三角積分調變器★ 交換電容式類比電路良率提升之設計方法
★ 使用分級時序記憶實作視角無關手勢辨識問題★ 部分平行低密度同為元檢查碼解碼器設計
★ 應用於無線通訊系統之同質性可組態記憶體式快速傅立葉處理器★ 低記憶體需求及效能改善的低密度同位元檢查碼解碼器架構
★ 混合式加法器設計★ 非線性鋰電池之充放電模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 主動式電泳顯示裝置目前已廣泛應用於手持式閱讀器,舉例來說可作為電子書方面的應用。此研究提出用於主動式微膠囊電泳顯示裝置之控制器設計,並可支援不同規格的驅動波形應用。此研究也提出在影像顯示時所需的驅動方法,此方法能提供快速的畫面更新速度與有效解決殘影問題以達到高品質的影像顯示。
另一方面,彩色化的主動式電泳顯示裝置是目前未來的趨勢主流。此研究提出正規化RGB彩色濾光片的設計方法,此方法提供15.66%的反射率、10.8的對比值與5.01%的NTSC的彩色顯示品質。另外為驗證控制器模組設計的有效性,將控制器連接並點亮六吋主動式黑白與彩色電泳式顯示面板,然而在顯示畫面效果上提供了良好的影像顯示品質。
摘要(英) The active matrix electrophoretic display (AMEPD) has been commonly used for the applications of smart handheld reading devices such as E-books and E-news. This study presents a controller design for micro-capsule AMEPDs. It can support different driving waveforms for various application specifications. It also presents a driving method for image display. The method provides fast speed performance for image display and also effectively eliminates the image residue for achieving high image quality.
On the other hand, the color AMEPD is the inevitable trend in the future. This study presents a normalized RGB color filter (CF) design which achieves 15.66% full white reflectance, 10.80 contrast ratio, and 5.01% of NTSC color gamut. The prototyped controller has connected to 6” mono and color AMEPD panels, where an excellent display quality has demonstrated the effectiveness of the proposed controller design.
關鍵字(中) ★ 驅動波形
★ 電子書
★ 主動式電泳顯示裝置
關鍵字(英) ★ driving waveform
★ E-books
★ active matrix electrophoretic display
論文目次 Table of Contents
Chinese Abstract…………………………………………………………. i
English Abstract………………………………………………………….. ii
Acknowledgements………………………………………………. iii
Table of Contents……………………………………………………….... iv
List of Figures……………………………………………………………. vi
List of Tables…………………………………………………………... viii
Chapter 1 Introduction……………………………………….. 1
1.1 Display Technology…………………………………. 1
1.2 Research Motivation………………………………… 5
1.3 Literature Review…………………………………. 7
1.4 Research Contributions…………………………… 9
1.5 Dissertation Outline………………………………. 9
Chapter 2 Electrophoretic Display Background…………... 10
2.1 Electrophoretic Display Technology…………... 10
2.2 Display Principle………………………………….. 12
2.3 Gray-Level Determination………………………... 13
2.4 Driving Waveform…………………………………... 17
2.5 Response Time Measurement……………………….. 18
2.6 Display Time and Lookup Table Size……………. 20
2.7 Color Electrophoretic Display ………………... 22
2.8 Color Filter and Conversion Algorithm……... 25
Chapter 3 Driving Waveforms…………………………………. 30
3.1 Driving Method Introduction…………………... 30
3.2 Generation of Driving Waveform………………… 33
3.3 Proposed Driving Method for High Image Quality. 37
3.4 Proposed Color Filter and Conversion Algorithm 39
Chapter 4 Display Controller………………………………… 43
4.1 Time Setting of Source and Gate Drivers……… 43
4.2 Hardware Block Diagram…………………………… 50
4.3 Controller Module Diagram………………………. 58
Chapter 5 Experimental Results……………………………... 60
5.1 Mono AMEPD Display………………………………… 60
5.2 Color AMEPD Display………………………………… 66
5.3 Further Quality Improvement…………………….. 71
Chapter 6 Conclusions and Future Research Works………… 74
6.1 Conclusions………………………………………….. 74
6.2 Future Research Works……………………………… 75
References …………………………………………….. 80
Appendix A NTSC Color Gamut Standard………….. 84
Appendix B CIE 1976 Standard……………………... 85
Appendix C ITU-R BT.601 Standard………………... 86
Appendix D ∆Vp Effect of Panels…………………… 87
VITA ……………………………………………………….. 88
List of Publications…………………………………………………….. 89
List of Figures
Figure 1.1 Tree felling, energy consumed, and waste in process of paper manufacturing………………………… 2
Figure 1.2 Power consumption between EPDs and LCDs…………… 5
Figure 1.3 Application ranges of EPD technology………………………… 6
Figure 1.4 Market forecast of EPD technology……………………………. 7
Figure 2.1 Micro-capsule electrophoretic display technology…………….. 10
Figure 2.2 Micro-cup electrophoretic display technology………………… 11
Figure 2.3 Commercial micro-capsule AMEPD and its backend system board……………………………………………………………
11
Figure 2.4 An electrophoretic suspension including black and white particles…………………………………………………………
14
Figure 2.5 Determination of gray levels in micro-capsule EPD…………... 16
Figure 2.6 Driving waveforms for micro-capsule EPD…………. …. …… 18
Figure 2.7 Response time for state change………………………………… 19
Figure 2.8 Driving waveform…………………………………………….... 21
Figure 2.9 CF structure…………………………………………………….. 23
Figure 2.10 Crosstalk Effect………………………………………………… 24
Figure 2.11 6” color AMEPD panel with RGBW CF………………………. 26
Figure 2.12 Color Addition with Vector Representation…………………… 27
Figure 2.13 2D Color Gamut of RGBW Display…………………………… 28
Figure 3.1 Micro-capsule TFT-EPD structure…………………………….. 30
Figure 3.2 Driving method for micro-capsule EPD……………………….. 32
Figure 3.3 Gray level definition…………………………………………… 35
Figure 3.4 Modified driving method………………………………………. 38
Figure 3.5 Color micro-capsule EPDs with normalized RGB CF………… 39
Figure 3.6 Proposed normalized RGB CF…………………………………. 40
Figure 3.7 Coding process in color AMEPD panel………………………... 41
Figure 3.8 Color AMEPD gray level definition…………………………… 42
Figure 4.1 Data format of source driver…………………………………… 44
Figure 4.2 Connection example of two source drivers…………………….. 44
Figure 4.3 Cascade timing chart of two source drivers……………………. 45
Figure 4.4 Connection example of gate driver…………………………….. 46
Figure 4.5 Timing chart of gate driver…………………………………….. 46
Figure 4.6 Measure SPV signals…………………………………………... 47
Figure 4.7 Measure CLKV signal numbers for a frame time……………… 47
Figure 4.8 Measure STL, LE, STV, and CLKV signal changes for a frame scanning………………………………………………………...
48
Figure 4.9 Measure CL signal numbers for a gate line time………………. 49
Figure 4.10 Measure Data and CL signals………………………………….. 49
Figure 4.11 Power circuitry…………………………………………………. 50
Figure 4.12 Power sequence for voltages of source and gate drivers………. 51
Figure 4.13 Power sequence for state change………………………………. 52
Figure 4.14 Structure of control switches…………………………………... 53
Figure 4.15 T3(min) = 1000 μs, T2&T4 (min) = 0 μs……………………… 53
Figure 4.16 T5 (min) = 0 μs, T6 (min) = 0 μs, T7 (min) = 0 μs…………….. 54
Figure 4.17 Relation between data and power sequence……………………. 54
Figure 4.18 AMEPD controller……………………………………………... 56
Figure 4.19 Control unit function block…………………………………….. 57
Figure 4.20 Hardware architecture of proposed controller…………………. 58
Figure 4.21 Display controller module……………………………………… 59
Figure 5.1 Residual images………………………………………………... 61
Figure 5.2 Modified sequence driving waveform………………………..... 62
Figure 5.3 Displayed images………………………………………………. 63
Figure 5.4 Experimental results…………………………………………..... 64
Figure 5.5 6” AMEPD panel with micro-capsule structure……………….. 65
Figure 5.6 Features and specifications of 6” mono AMEPD panel…………………………………………………………….
65
Figure 5.7 6” color AMEPD panel and color pixels……………………..... 66
Figure 5.8 Features and specifications of 6” color AMEPD panel…………………………………………………………….
66
Figure 5.9 Reflectance factor of various colors…………………………… 67
Figure 5.10 Measurement results………………………………………….... 69
Figure 5.11 CF with 10%, 30%, 50%, and 100% CF area ratio…………….. 70
Figure 5.12 Measurements of full white reflectance, contrast ratio and
NTSC color gamut for various CF area ratios………………….
71
Figure 5.13 △Vp effect of panel……………………………………………. 72
Figure 5.14 Driving waveform with modified voltages of source ICs……… 73
Figure 6.1 AMEPD display controller system…………………………….. 76
Figure 6.2 6” mono AMEPD panel with single-chip driver……………….. 76
Figure 6.3 Features and specifications of 6” mono AMEPD panel with single-chip driver…………………………………………….....
77
List of Tables
Table 1.1 Related bi-stable display technology vendors………………….. 4
Table 1.2 Related bi-stable display technology comparison……………… 4
Table 1.3 Advantages of EPD technology………………………………... 5
Table 1.4 Main applications of EPD technology………………………..... 6
Table 3.1 Lookup table for driving waveform……………………………. 37
Table 4.1 Source driver pin description…………………………………... 44
Table 4.2 Truth table of data input………………………………………... 44
Table 4.3 Gate driver pin description……………………………………... 45
Table 4.4 Time setting of voltages of source and gate drivers…………… 51
Table 5.1 Measurement results………………………………………….... 70
Table 6.1 Conventional V.S. Proposed Color EPD Display……………… 75
參考文獻 [1] A. Henzen and J. V. D. Kamer, “The Present and Future of Electronic Paper,” Journal of the Society for Information Display, No.5, pp. 437–442, 2006.
[2] I. Ota, “History of Electrophoretic Displays and Proposal of a Novel Cell Structure for Lateral Particle Movement Display Devices,” International Display Workshops, pp. 525–528, 2009.
[3] A. Henzen, J. V. D. Kamer, T. Nakamura, T. Tsuji, M. Yasui, and M. Pitt, “Development of Active Matrix Electronic Ink Displays for Handheld Devices,” Society for Information Display Symposium Digest, pp. 176–179, 2003.
[4] A. Henzen and J. V. D. Kamer, “Perspectives and Challenges of Electrophoretic Displays,” International Meeting on Information Display Digest, pp. 236–240, 2005.
[5] J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “A Critical Review of the Present and Future Prospects for Electronic Paper,” Journal of the Society for Information Display, pp. 129–156, January 2011.
[6] K. Blankenbach, “Techniques and Challenges for Reflective Display Applications -LCDs vs. E-Paper,” International Meeting on Information Display Digest, pp. 102–103, 2010.
[7] R. Zehner, K. Amundson, H. Gates, T. Tsuji, M. Yasui, and M. Pitt, “System Integration of Electronic Paper Displays,” Society for Information Display Symposium Digest, pp. 1827–1829, 2006.
[8] M. Pitt, R. Zehner, K. Amundson, and H. Gates, “Power Consumption of Micro-Encapsulated Display for Smart Handheld Applications,” Society for Information Display Symposium Digest, pp. 1378–1381, 2002.
[9] H. Gates and T. Ohkami, “High Performance Active Electronic Display Controller,” Society for Information Display Symposium Digest, pp. 693–696, 2008.
[10] H. Gates, T. Ohkami, and J. Au, “Improved Electronic Controller for Image Stable Displays,” Society for Information Display Symposium Digest, pp. 1406–1409, 2006.
[11] W. C. Kao, J. A. Ye, F. S. Lin, P. Y. Cheng, and R. A. Sprague, “Configurable Timing Controller Design for Active Matrix Electrophoretic Display,” IEEE Transactions on Consumer Electronics, Vol. 55, No. 1, pp. 1–5, February 2009.
[12] W. C. Kao, “Electrophoretic Display Controller Integrated with Real-time Halftoning and Partial Region Update,” IEEE/OSA Journal of Display Technology, Vol. 6, No. 1, pp. 36 - 44, January 2010.
[13] Q. M. Lu, H. H. Chen, and J. S. Liao, “Active Matrix Electrophoretic Display with Micro-Cup Structure,” International Display Workshops, pp. 227–230, 2008.
[14] C. M. Lu, H. H. Chen, and J. S. Liao, “Performance Active Matrix Micro-Cup Electrophoretic Display,” Society for Information Display Symposium Digest, pp. 1501–1504, 2009.
[15] C. M. Lu, H. H. Chen, J. S. Liao, and M. C. Weng, “High Integration and Functionality Controller for Active Matrix Electrophoretic Display,” Society for Information Display Symposium Digest, pp. 374–378, 2010.
[16] C. M. Lu, M. C. Weng, and Y. C. Chen, “High Performance and Colorful Active Matrix Electrophoretic Display,” International Display Workshops, pp. 415–418, 2010.
[17] C. M. Lu, Y. C. Chen, and M. C. Weng, “An Integrated Back-End System Design for Active Matrix Electrophoretic Display,” Society for Information Display Symposium Digest, pp. 1330–1333, 2011.
[18] A. Henzen and J. V. D. Kamer, “High Quality Images on Electronic Paper Displays,” Society for Information Display Symposium Digest, pp. 1666–1669, 2005.
[19] Y. Kwak, J. Park, D. S. Park, and J. B. Park, “Generating Vivid Colors on Red-green-blue-white Electronic-Paper Display,” Applied Optics, pp. 4491–4500, 2008.
[20] A. Bouchard, H. Doshi, B. Kalhori, and A. Oleson, “Advances in Active-Matrix Color Displays Using Electrophoretic Ink and Color Filters,” Society for Information Display Symposium Digest, pp. 1934–1937, 2006.
[21] L. Wang, Y. Tu, and L. Chen, “Trade-off between Luminance and Color in RGBW Displays for Mobile-Phone Usage,” Society for Information Display Symposium Digest, pp. 1142–1145, 2007.
[22] R. C. Liang, J. Hou, H. Zang, and J. Chung, “Passive Matrix Microcup Electrophoretic Displays,” International Display Manufacturing Conference, Taipei, pp.1–4, 2003.
[23] S. Inoue, H. Kawai, S. Kanbe, T. Saeki, and T. Shimoda, “High Resolution Microencapsulated Electrohoretic Display (EPD) Driven by Poly-Si TFTs with Four-Level Grayscale,” IEEE Transactions on Electron Devices, Vol. 49, No. 8, pp.1532–1539, August 2002.
[24] B. Fitzhenry-Ritz, “Optical Properties of Electrophoretic Image Displays,” IEEE Transactions on Electron Devices, Vol. 28, No. 6, pp. 726–735, June 1981.
[25] J. Hou, S. Shokhor, and S. Naar, “Active Matrix Electrophoretic Displays Containing Black and White Particles with Opposite Polarities,” Society for Information Display Symposium Digest, pp. 164–167, 2001.
[26] M. A. Hopper and V. Novotny, “An Electrophoretic Display, Its Properties, Model, and Addressing,” IEEE Transactions on Electron Devices, Vol. 26, No. 8, pp. 1148–1152, August 1979.
[27] T. Bert and H. D. Smet, “The Microscopic Physics of Electronic Paper Revealed,” Displays, Vol. 24, pp. 103–110, 2003.
[28] T. Bert, H. D. Smet, F. Beunis, and K. Neyts, “Complete Electrical and Optical Simulation of Electronic Paper,” Displays, Vol. 27, pp. 50–55, 2006.
[29] R. C. Liang, J. Hou, H. Zang, J. Chung, and S. Tseng, “Microcup Displays: Electronic Paper by Roll-to-roll Manufacturing Processes,” Journal of the Society for Information Display, No. 4, pp. 621–628, April 2003.
[30] R. A. Sprague, “Active Matrix Displays for Ereaders Using Microcup Electrophoretics,” Society for Information Display Symposium Digest, pp. 365–368, 2011.
[31] M. Johnson, G. Zhou, R. Zehner, K. Amundson, A. Henzen, and J. V. D. Kamer, ”High-Quality Images on Electrophoretic Displays,” Journal of the Society for Information Display, No. 2, pp. 175–180, February 2006.
[32] K. Amundson and T. Sjodin, “Achieving Graytone Images in a Microencapsulated Electrophoretic Display,” Society for Information Display Symposium Digest, pp. 1918–1921, 2006.
[33] R. Zehner, K. Amundson, A. Knaian, B. Zion, M. Johnson, and G. Zhou, “Drive Waveforms for Active Matrix Electrophoretic Displays,” Society for Information Display Symposium Digest, pp. 842–845, 2003.
[34] S. Lee, C. Kim, Y. Seo, and C. Hong, “Color Conversion from RGB to RGB+white While Preserving Hue and Saturation,” Society for Information Display Color Imaging Conference, pp. 287–291, 2002.
[35] C. M. Lu and C.L. Wey, “A Controller Design for Micro-Capsule Active Matrix Electrophoretic Displays,” IEEE/OSA Journal of Display Technology, Vol. 7, No. 8, pp. 434–442, August 2011.
[36] C. M. Lu and C.L. Wey, “A Controller Design for Color Active Matrix Displays Using Electrophoretic Inks and Color Filters,” IEEE/OSA Journal of Display Technology, Vol. 7, No. 9, pp. 482–489, September 2011.
[37] C. M. Lu and C.L. Wey, “A Controller Design for High Quality Images on Micro-Capsule Active Matrix Electrophoretic Displays,” submitted to the Korea Information Display Society (KIDS) Journal of Information Display, 2012.
[38] C. M. Lu and C.L. Wey, “A Controller Design for Micro-Cup Active Matrix Electrophoretic Displays,” submitted to the Journal of the Society for Information Display, 2012.
[39] W. C. Kao, J. J. Liu, and M. I. Chu, “Integrating Photometric Calibration With Adaptive Image Halftoning for Electrophoretic Displays,” IEEE/OSA Journal of Display Technology, Vol. 6, No. 12, pp. 625 - 632, December 2010.
[40] W. C. Kao, G. F. Wu, Y. L. Shih, W. T. Chang, F. S. Lin, and Y. J. Hsieh, “Design of Real-Time Image Processing Engine for Electrophoretic Displays,” IEEE/OSA Journal of Display Technology, Vol. 7, No. 10, pp. 556 - 561, October 2011.
[41] “NTSC Color Gamut Standard,” Available at http://en.wikipedia.org/wiki/ Color_space.
[42] “CIE 1976 Standard,” Available at http://en.wikipedia.org/wiki/ CIE_1976_color_space.
[43] “RGB to YUV Signals under ITU-R BT.601 Standard,” Available at http://en.wikipedia.org/wiki/ITU-R_BT.601.
指導教授 魏慶隆(Chin-Long Wey) 審核日期 2012-1-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明