博碩士論文 982202029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.133.160.156
姓名 廖庭偉(Ting-Wei Liao)  查詢紙本館藏   畢業系所 物理學系
論文名稱 分子束系統架設
(The Building of the Molecular Beam System)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們建立一套超高真空分子束系統,其中包含樣品製備設備、脈衝分子束源及其腔體、散射及反應腔體(主腔體)、氣態偵測器及其腔體。本系統引入差壓抽氣系統,藉此使主腔體之氣壓不會因脈衝閥作用而影響。
除了系統之架設外,我們同時將本系統之分子束最佳化及樣品位置最佳化,以得到最佳之分子束訊號。此分子束系統可被應用在觀測奈米觸媒催化之過程的物理機制以及奈米團簇之形貌隨溫度或其他參數之變化。
最後我們利用此系統進行金奈米團簇在氧化鋁表面上之形貌隨溫度變化之實驗。我們利用氦氣分子束的反射率而得知表面的粗糙程度。金奈米團簇在低覆蓋率時,其殘留於氧化鋁表面之數量會隨樣品溫度的增加而減少;當樣品溫度達到1000 K時,金幾乎不再殘留於氧化鋁表面上,而使得氧化鋁表面裸露在外。然而大量的金奈米團簇覆蓋於氧化鋁表面上時,雖然其殘留數量同樣會隨樣品溫度的增加而減少,但是當樣品溫度達到1000 K後依然有一定量之金奈米團簇殘留於表面上,此殘留於表面的金奈米團簇其形貌隨溫度不同而產生變化。由300 K變化到900 K之間,被金奈米團簇覆蓋的氧化鋁表面會形成平整的結構;在溫度上升到1000 K後,被金奈米團簇覆蓋的氧化鋁表面會再次變為粗糙。
摘要(英) We have built up a new ultrahigh vacuum molecular beam system. This system contains a molecular beam source chamber, a main chamber and a QMS chamber. Between any two of them, there is an aperture. These apertures are utilized for differential pumping, which prevents the pressure of the main chamber increase too much, when the pulsed valve operates.
In order to obtain the optimized specular molecular beam, we found out the optimal conditions of the molecular beam and the optimal position for the scattering experiments. We also utilized this system to demonstrate the morphological evolution of gold nano-clusters supported by θ-Al2O3/NiAl(100) with the sample temperature.
At low coverages of Au, such as 1 ML and 4 ML, the Au on the θ-Al2O3/NiAl(100) diffuses into the oxide film, as temperature varies from 300 K to 1000 K, and that makes the bare oxide surface exposed. At high coverage of Au, such as 8 ML, there are some Au nano-clusters remained on the θ-Al2O3/NiAl(100) after annealing to 1000 K and the morphology of these Au clusters is a function of the temperature: as the temperature increased from 300 K to 900 K, it is more likely the Au covered-surface became more smooth. As the temperature of the sample further increased to 1000 K, the surface became relatively rough, resulting in drop of the reflectivity.
關鍵字(中) ★ 分子束
★ 表面形貌探測
★ 金奈米粒子
關鍵字(英) ★ molecular beam
★ morphology
★ gold nano-clusters
論文目次 摘要 I
Abstract II
致謝 III
Contents vii
List of Figures ix
List of Tables XIII
Chapter 1: Introduction 1
Reference of Chapter 1 3
Chapter 2: Literature Survey 4
2-1: Introduction to Molecular Beam Method 4
2-1-1: Structure of the Free Jet Source 5
2-1-2: Ideal Thermodynamic Analysis of the Expansion 7
2-1-3: Pulsed Molecular beams 12
2-2: Molecular Beam Approach 14
Sticking Coefficient Measurement 15
Surface Reactivity Studies 17
Molecular Beam Scattering Experiment 23
Reference of Chapter 2 31
Chapter 3: Experiment Apparatus and Methods 33
3-1: Overview 33
3-2: Ultrahigh Vacuum Chambers and Vacuum Pumps 33
3-2-1: Introduction to Vacuum 34
3-2-2: An UHV System 34
3-2-3: Vacuum Chambers and Pumps of Our System 35
3-3: The Design of the Sample Holder 36
3-4: The Design of the Molecular Beam Source 43
3-4-1: The Design of Molecular Beam Source Chamber: 44
3-4-2: The Design of Pulsed Valve Holder Set 46
3-5: The Molecular Beam System 48
3-6: Alignment 49
3-7: The Pulsed Valve Control Instrument 51
3-8: Quadrupole Mass Spectrometers 53
3-9: Experiment Methods 55
3-9-1: Sample Cleaning 55
3-9-2: Oxygen Exposure 55
3-9-3: Au Vapor Deposition 55
Reference of Chapter 3 57
Chapter 4: Results and Conclusions 58
4-1: Optimal Conditions of the Molecular Beam and Testing Results 58
4-1-1: The Optimal Conditions of the Molecular Beam 58
4-1-2: The Optimal Position of the Sample 66
4-2: Sensitivity to the Surface Structures 67
4-3: Morphology of the Au/θ-Al2O3/NiAl(100) as a Function of the Temperature 70
4-4: Conclusions 77
參考文獻 Reference of Chapter 1
[1] M. Asscher and G. A. Somorjai, in Atomic and Molecular Beam Methods, edited by G. Scoles (Oxford University Press, Oxford, 1988), Vol. 2, p. 489.
[2] M. P. D. Evelyn and R. J. Madix, Surf. Sci. Rep. 3, 413 (1984).
[3] C. T. Rettner, D. J. Auerbach, J. C. Tully, and A. W. Kleyn, J. Phys. Chem. 100, 13021 (1996).
[4] J. Libuda, H.-J. Freund / Surface Science Reports 57 (2005) 157–298
Reference of Chapter 2
[1] G. Scoles, Atomic and Molecular Beam Methods, Oxford University Press, Oxford, 1988.
[2] H. Pauly, in: G. Scoles (Ed.), Atomic and Molecular Beam Methods, Oxford University Press, Oxford, 1988
[3] D.R. Miller, in: G. Scoles (Ed.), Atomic and Molecular Beam Methods, Oxford University Press, Oxford, 1988.
[4] Ashkenas, H., and Sherman, F.S. (1966) 4th RGD 1964, 2, 784.
[5] Anderson, J.B. (1972). AIAA J. 10, 112.
[6] Murphy, H. (1984). “The Effects of Source Geometry on Free Jet Expansion,” PhD thesis. University of California, Sam Diego.
[7] Beijerinck, H., and Verster, N. (1981). Physica 111C, 327
[8] Sikora, G.S. (1973). “Analysis of asymptotic Behavior of Free Jets: Prediction of Molecular Beam Intensity an Velosity Distributions,” PhD thesis, Princeton University, Princeton, NJ.
[9] Anderson, J.B. (1974). In Molecular Beams and Low Density Gas Dynamics, P.P. Wegener, ed. Dekker, New York, pp. 1-91.
[10] Beijerinck, H. ven Grewen, R., Kerstel, E., Martens, J., van Vliembergen, E., Smits, M., and Kaashoek, G. (1985). Chem. Phys. 96, 153.
[11] Campargue, R. (1984). J. Phys. Chem. 88, 4466.
[12] J. Libuda, H.-J. Freund / Surface Science Reports 57 (2005) 157–298
[13] P. R. McCabe, L. B. F. Juurlink, and A. L. Utz , Rev. Sci. Instrum., Vol. 71, No. 1, January 2000
[14] L. B. F. Juurlink, P. R. McCabe, R. R. Smith, C. L. DiCologero, and A. L. Utz, Phys. Rev. Lett. 83, 868 ~1999!.
[15] J. Libuda, I. Meusel, J. Hartmann, and H.-J. Freund Rev. Sci. Instrum., Vol. 71, No. 12, December 2000
[16] K. Wolter, O. Seiferth, H. Kuhlenbeck, M. Ba¨umer, and H.-J. Freund, Surf. Sci. 399, 190 (1998).
[17] S. Schauermann, J. Hoffmann, V. Joha´nek, J. Hartmann and J. Libuda Phys. Chem. Chem. Phys., 2002, 4, 3909–3918
[18] J. Libuda, I. Meusel, J. Hartmann and H.-J. Freund, Rev. Sci. Instrum., 2000, 71, 4395.
[19] T. Engel and G. Ertl, in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, ed. D. A. King and D. P. Woodruff, Elsevier, Amsterdam, 1982, vol. 4, p. 73.
[20] Bene Poelsema and George Comsaa. Scattering of Thermal Energy Atoms from Disordered Surfaces (1989)
[21] M.F. Luo et al. Chemical Physics Letters 381 (2003) 654–659
[22] D. Farias, K. Rieder, Rep. Prog. Phys. 61 (1998) 1575.
Reference of Chapter 3
[1] John B. Hudson, Surface Science, 1998, page 137, Table 7.1
[2] 真空技術與應用, 行政院國家科學委員會精密儀器發展中心出版, 2001, page 102, figure 6.1
[3] M. A. D. Fluendy and P. Lewley, Chemical Applications of Molecular Beam Scattering , Chapman and Hall, London, 1973
[4] J. Libuda, Surface Science, 2005, 587, page 57, Figure 1(a)
[5] Hans Lu ̈th, Surfaces and Interfaces of Solid (2nd), Springer-Verlag (1993)
[6] Skoog D.A. et al., Principles of Instrumental Analysis (4th), Saunders College (1992)
[7] Luo, M. F.; Chiang, C. I.; Shiu, H. W.; Sartale, S. D.; Kuo, C. C. Nanotechnology 2006, 17, 360.
[8] Luo, M. F.; Chiang, C. I.; Shiu, H. W.; Sartale, S. D.; Wang, T. Y.; Chen, P. L.; Kuo, C. C. J. Chem. Phys. 2006, 124, 167409.
[9] Sartale, S. D.; Shiu, H. W.; Ten, M. H.; Huang, J. Y.; Luo, M. F. Surf. Sci. 2006, 600, 4978.
[10] Zei, M. S.; Lin, C. S.; Wei, W. H.; Chiang, C. I.; Luo, M. F. Surf. Sci. 2006, 600, 1942.
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2012-1-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明