博碩士論文 944406001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.117.156.31
姓名 劉顥程(Hao-Cheng Liu)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 製造系統之無人搬運車的控制問題研究
(A Study on AGV Control Problems in Manufacturing Systems)
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究旨在發展無人化自動搬運車(AGVs)的派車方法。物料搬運在很多環境是非常重要的,例如,港口、倉儲、TFT-LCD與半導體無塵室。在自動化物料搬運設備中,無人化自動搬運車是最常見的,因為無人化自動搬運車可以很容易的適應環境,也很容易隨環境或是設備改變,變更行走路線。於是,已經有很多工廠使用無人化自動搬運車負責物料搬運。派車法則對無人化自動搬運車的能力有很重大的影響。所以本研究專注於發展無人化自動搬運車的派車方法。本研究發展了三個派車方法分別針對三個不同的環境。第一,本研究發展一個Fuzzy Logic Control (FLC)於一個job shop的環境中派遣無人化自動搬運車。第二,本研究利用分群的概念提出一個派車方法,該方法可以同時解決由Ho and Chien (2006)定義的四個派遣多載量無人化自動搬運車子問題中的兩個子問題。第三,本研究針對TFT-LCD工廠中的hot lot問題,發展出Fuzzy-Based Dynamic Bidding (FBDB)派車方法,期該法可以降低hot lot對系統帶來的負面影響。本研究利用電腦模擬測試本研究所提出的方法,而實驗結果也證實了三個方法的優越性。
摘要(英) This study focuses on developing dispatching method for Automatic Guided Vehicles (AGVs) system in a manufacturing system. Material handling is critical in many facilities and manufacturing systems such as seaports, warehouse, TFT-LCD fabs, and semiconductor fabs. Among automatic material handling systems, AGVs is the most common because AGVs adapt easily to layout routes. Therefore, a lot of companies have utilized AGVs for material handling. Dispatching rule is essential to AGV’s transportation capability. Therefore, this study focuses on developing dispatching rules to dispatch AGVs. Three dispatching rules are developed for three different systems in this study. First, a Fuzzy Logic Control (FLC) is proposed for dispatching AGVs in a job shop environment. Second, a clustering-based method is proposed to solve two sub-problems of dispatching multiple-load AGVs, which are defined by Ho and Chien (2006), simultaneously. Third, a Fuzzy-Based Dynamic Bidding (FBDB) method is developed for dispatch AGVs to reduce the negative impact brought by hot lots in a TFT-LCD fab. Computer simulation is used to examine the proposed methods, and the superiority of the proposed methods is given by analyzing the results.
關鍵字(中) ★ hot lot
★ 模糊理論
★ 多屬性方法
★ 負載選擇
★ 無人搬運車
★ 派車法則
關鍵字(英) ★ Fuzzy
★ multiple-attribute
★ hot lot
★ vehicle dispatching
★ AGVs
★ load selection
論文目次 摘要 I
Abstract II
誌 謝 III
Contents IV
List of Figures VI
List of Tables VII
Chapter 1. Introduction 1
Chapter 2. Literature review 4
2.1 AGV Dipsatching 4
2.2 Scheduling Problem in TFT-LCD and Semiconductor Fabs 7
Chapter 3. A Multiple-Attribute Fuzzy Logic Control for Dispatching Multiple-Load AGVs 10
3.1 Introduction 10
3.2 FLC 10
3.2.1 Fuzzification 10
3.2.2 Inference Rules 12
3.2.3 Defuzzification 14
3.3 Simulation Experiments 15
3.3.1 Environment 15
3.3.3 Throughput Performance 19
3.3.4 Tardiness Performance 21
3.3.5 Comparison 23
3.4 Findings 25
Chapter4. A Multiple-Attribute Method for Concurrently Solving the Pickup-Dispatching Problem and the Load-Selection Problem of Multiple-Load AGVs 27
4.1 Introduction 27
4.2 The Proposed Method 28
4.3 Method for the Task-Determination Problem 29
4.4 The Method for the Delivery-Dispatching Problem 29
4.5 The Proposed Method 29
4.5.1 Preparation – The First Stage of the Proposed Method 30
4.5.2 Clustering – The Second Stage of the Proposed Method 33
4.5.4 Execution – The Fourth Stage of the Proposed Method 35
4.6 Simulation Experiments 36
4.7 Analysis of Simulation Results 41
4.7.1 The Proposed Method vs. Category B Methods 41
4.7.2 The Proposed Method vs. Category C Methods 43
4.7.3 Category C Methods vs. Category B Methods 44
4.7.4 The Proposed Method vs. Category D Methods 46
4.8 Findings 47
Chapter 5. Managing the Production of Hot Lots and Regular Lots in a TFT-LCD Fab 49
5.1 Introduction 49
5.2 Proposed Method 50
5.2.1 Problem Environment and the Three Problems Studied Here 50
5.2.2 The lot selection of interbay AGVs 52
5.2.3 The lot selection of intrabay machines 59
5.2.4The proposed EPT (Earliest Possible Time) method for the photo bay selection of lots 61
5.3 The methods once used by the case company 65
5.4 Simulation Experiments 68
5.4.1 The Performance of Hot Lot Ratios 70
5.4.2 The Performance of Lot Selection Methods 71
5.4.3 The Performance of Photo Bay Selection Methods 74
5.5 Findings 77
Chapter 6. Conclusion 79
參考文獻 References
1. Bartholdi JJ, Platzman LK., 1989. Decentralized control of automated guided vehicles on a simple loop. IIE Transactions, 21(1):76–81.
2. Bilge Ü, Esenduran G, Varol N, Öztürk Z, Aydin B, Alp A., 2006. Multi-attribute responsive dispatching strategies for automated guided vehicles. International Journal of Production Economics , 100(1):65-75.
3. Bilge Ü, Tanchoco JMA., 1997. AGV systems with multi-load carriers: Basic issues and potential benefits, Journal of Manufacturing Systems, 16(3):159-74.
4. Bozer YA, Yen CK., 1996. Intelligent dispatching rules for trip-based material handling systems. Journal of Manufacturing Systems, 15(4):226-39.
5. Dabbas, R. M., Chen, H. M., Fowler, J. W., and Shunk, Dan., 2001. A combined dispatching criteria approach to scheduling semiconductor manufacturing systems. Computers & industrial engineering, 39(3-4), 307-324.
6. DeJong, C. D., and Wu, S. P., 2002. Simulating the Transport and Scheduling of Priority Lots in Semiconductor Factories. 2002 Winter Simulation Conference. 2, 1387-1391.
7. Egbelu PJ, Tanchoco JMA., 1984. Characterization of automatic guided vehicle dispatching rules. International Journal of Production Research, 22(3):359-74.
8. Egbelu PJ., 1987. The use of non-simulation approaches in estimating vehicle requirements in an automated guided vehicle based transport system. Material Flow, 4(1-2):17-32.
9. Ehteshami, B., Petrakian, R. G., and Shabe, P. M., 1992. Trade-offs in cycle time management: hot lots. IEEE transactions on semiconductor manufacturing, 5(2), 101-106.
10. Gaskins RJ, Tanchoco JMA, Taghaboni F., 1989, Virtual flow paths for free-ranging automated guided vehicle systems. International Journal of Production Research, 27(1):91-100.
11. Gupta, A.K., Ganesan, V.K., and Sivakumar, A.I., 2004. Hot lot management: minimizing cycle time in batch processes. 2004 IEEE International Engineering Management Conference” 3, 1217-1221.
12. Ho YC, Shaw HC., 2000. The performance of multiple-load AGV systems under different guide path configurations and vehicle control strategies. International Journal of Manufacturing Technology and Management, 1(2/3):218-31.
13. Ho YC, Chien SH., 2006. A simulation study on the performance of delivery dispatching rules for multiple-load AGVs. International Journal of Production Research, 44(20):4193-222.
14. Ho YC, Liu HC., 2006. A simulation study on the performance of pickup-dispatching rules for multiple-load AGVs. Computers and Industrial Engineering, 51(3):445-63.
15. Ho YC, Liu HC., 2009. The performance of load-selection rules and pickup-dispatching rules for multiple-load AGVs. Journal of Manufacturing Systems, 28(1):1-10.
16. Hwang, H., and Kim, S.H., 1998, Development of dispatching rules for automated guided vehicle systems. Journal of Manufacturing Systems, 17(2), 137-143
17. Jang, J., Shu, J., and Ferreira P.L., 2001. An AGV routing policy reflecting the current and future state of semiconductor and LCD production lines. International journal of production research 39(17), 3901-3921.
18. Jeong, B.H., and Randhawa, S. U., 2001. A multi-attribute dispatching rule for automated guided vehicle systems. International Journal of Production Research, 39(13), 2817-2832.
19. Klein, C.M., and Kim, J., 1996. AGV dispatching. International Journal of Production Research, 34(1), 95-110.
20. King RE, Hodgson TJ, Monteith SK. Evaluation of heuristic control strategies for AGVs under varying demand arrival patterns, In J.A. White and I.W. Pence Jr. (Ed.) Progress in Material handling and logistics. New York, NY: Springer-Verlag; 1989.
21. Kim SH, Hwang H., 1999. An adaptive dispatching algorithm for automated guided vehicles based on an evolutionary process. International Journal of Production Economics, 60-61:465-472.
22. Law AM, Kelton WD. Simulation modeling and analysis. Boston: McGraw-Hill; 2000.
23. Lee, Y. H., and Lee, B., 2003. Push-pull production planning of the re-entrant process. International Journal of Advanced Manufacturing Technology 22(11), 922-931.
24. Lin, J. T., F. K. Wang, and Chang Y.M., 2006. A hybrid push/pull-dispatching rule for a photobay in a 300 mm wafer fab. Robotics and computer-integrated manufacturing, 22(1), 47-55.
25. Min. H. S., a. Yih., Y., 2003. Selection of dispatching rules on multiple dispatching decision points in real-time scheduling of a semiconductor wafer fabrication system. Internal Journal of Production Research, 41(16), 3921-3941.
26. Narahari, Y., and Khan L. M., 1997. Modeling the effect of hot lots in semiconductor manufacturing systems. IEEE transactions on semiconductor manufacturing, 10(1), 185-188.
27. Occeña LG, Yokota T., 1991. Modeling of an automated guided vehicle system (AGVS) in a just-in-time (JIT) environment. International Journal of Production Research, 29(3):495-511.
28. Occeña LG, Yokota T., 1993. Analysis of the AGV loading capacity in a JIT environment. Journal of Manufacturing System, 12(1):24-35.
29. Ozden, M., 1988. A simulation study of multiple-load-carrying automated guided vehicles in a flexible manufacturing system. International Journal of Production Research, 26(8):1353-66.
30. Park, B. C., Choi, Byoung K, Kim, Byung H. ,and Lee, Jin H., 2008. "Simulation Based Planning and Scheduling System for TFT-LCD FAB." 2008 Winter Simulation Conference. 2271-2276.
31. Russell RS, Tanchoco JMA., 1984. An evaluation of vehicle dispatching rules and their effect on shop performance. Material Flow, 1:271-80.
32. Schmidt, K., 2007. "Improving Priority Lot Cycle Times." 2007 IEEE/SEMI Advanced Semiconductor Manufacturing Conference. 117-121.
33. Sabuncuoglu I, Hommertzheim DL., 1992. Dynamic dispatching algorithm for scheduling machines and automated guided vehicles in a flexible manufacturing system. International Journal of Production Research, 30(5):1059-79.
34. Tanchoco JMA, Co CG. Real-time control strategies for multiple-load AGVs. In J.M.A. Tanchoco (Ed.) Material flow systems in manufacturing (1st ed., pp. 300-331). London: Chapman & Hall;1994.
35. Tan, K.K., Tang, K.Z., 2001. Vehicle dispatching system based on Taguchi-tuned fuzzy rules. European Journal of Operational Research, 128, 545–557.
36. Tyan, J. C., Du, T. C., Chen, J. C., and Chang I. H., 2004. Multiple response optimization in a fully automated FAB: an integrated tool and vehicle dispatching strategy. Computers & industrial engineering, 46(1), 121-139.
37. Yim DS, Linnt RJ., 1993. Push and pull rules for dispatching automated guided vehicles in a flexible manufacturing system. International Journal of Production Research, 31(1):43-57.
指導教授 何應欽(Ying-Chin Ho) 審核日期 2012-5-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明