博碩士論文 981207013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.142.53.68
姓名 林寶玲(Pao-Lin Lin)  查詢紙本館藏   畢業系所 學習與教學研究所
論文名稱 正負數量表徵的心理數線發展
(The Development of the Mental Number Line in the Representation of Positive and Nagative Numbers)
相關論文
★ 以同儕互評與討論提升小六學童之寫作表現 ~以行動學習輔具教室為例★ 從眼動資料探討字形與聲旁在篇章閱讀的效果
★ 從眼動資料探討連接詞與閱讀歷程之關係★ EFL大學生閱讀英文的眼動資料分析
★ 以眼動型態探討背景知識對詞彙辨識的影響★ 閱讀教學與國民小學學童閱讀動機及行為的關係—以2005年PIRLS資料為例
★ 合作寫作對於國小學童科學概念學習之影響★ 記憶廣度與語境效應對閱讀歧義句的影響:來自眼動的證據
★ 由句法探討手語聽障生書面語閱讀的現象★ 英文閱讀能力與先備知識對閱讀物理篇章推論的影響
★ 識字教學法與口語詞彙能力對新移民女性中文識字學習之影響★ 國小學生對統計圖理解層次之研究
★ 國小學童對幽默漫畫閱讀歷程之研究★ 成人與小六學童在中文多義詞語意激發和選擇的比較
★ 線上閱讀測驗之發展與學生能力表現之探究★ 關係子題及線圖對國小數學低成就學生理解比較型文字題之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究旨在找出國內不同階段學童在正負數量表徵的發展狀況。研究方法分二個實驗,分別為實驗一:(1) 小二、小四、小六、國二及國二學習障礙學童進行數量範圍0~100、0~1000、0~10000、0~100000的數線評估作業(number-line estimation task);(2) 上述小六及國二學童增加進行負數數量範圍-10~10及-100~100的作業;(3)以上各組受試皆進行問卷針對其學習狀況的調查並收集數學成就評量成績以做為背景分析。實驗二:將實驗一中小六隨機選取14名及國二隨機選取24名進行正負數量大小判斷作業。
研究結果發現,在正數範圍的數線評估作業誤差率的部分,小六和國二的數線評估誤差率無顯著差異,但其他各年級間皆有顯著差異。國二學障生只與小四無顯著差異。在負數範圍的數線評估作業誤差率部分,小六、國二及國二學障生無顯著差異。在數線評估的數量表徵型態的迴歸分析結果發現,小二在0~100的數量範圍逹線性表徵,小四、小六、國二及國二學障生在0~100000的數量範圍逹線性表徵;在負數數量範圍的部分,小六、國二及國二學障生在-100~100的數量範圍逹線性表徵。小二在數量100以內逹到線性表徵的結果與國外研究相近,但小四生在數量100000以內逹到線性表徵則比國外研究指出要到成人才能逹到線性表徵的情況要早。此結果推估因國內數線教學於小三開始,可能是小四學生已較熟悉數線和大數量有關。在負數數量表徵的部分,小六、國二及國二學障學生在數量-100以內逹到線性表徵,此結果與國外研究相同,唯國外研究對象為成人,顯示國內從小六學生即逹負數線性表徵,推估小六學生可藉由對正數的概念自行推估0左端的負數概念。而國二學障生在正負數量100以內的小數量可逹線性表徵,而在100000範圍的大數量則可能為其弱勢。在正負數量大小判斷作業的結果顯示小六和國二學生的錯誤率並無顯著差異,經評估學生在兩數皆為負數的作業反應時間顯著較長,小六生偏向使用以性質符號和數字分開存取的成份表徵型態,而國二生偏向使用合併存取的整體表徵型態。最後,在兩個實驗間的相關分析結果發現,小六的正負數量大小判斷的錯誤率和數學成就評量間有顯著相關,但在正負數量大小判斷錯誤率和數線評估誤差率間則無相關,國二則三者均無相關,此結果的意義在文中有進一步討論。
摘要(英) This study examined the representation of the positive and negative numbers in students during different stages of development in Taiwan. The sample included second graders, fourth graders, sixth graders, eighth graders and the learning disability students.
In the first experiment, all children were evaluated with number-line estimation task, which incorporated four kinds of ranges, expanding from 0-through-100000. The last three groups in the sample were also evaluated by the same task for the -10 through 10 and -100 through 100 ranges. In addition, students’ learning backgrounds were also collected by using questionnaires and their average mathematics achievement in the semaster. In the second experiment, sixth and eighth graders were chosen from the first experiment to access with the additional numerical comparison task.
The results indicate that in the number-line task, the main improvement occur in the fourth grade from the number 0 through 100000. The performance score is similar to how the adult college students performed in other countries. Second, sixth grade also show significant improvement in the negative range number-line task, which indicates that was some strategies maybe used by the students when solving the estimation task with negative numbers despite the fact that students have not learned the negative numbers yet. Third, eighth grade learning disabilities student also showed significant improvement in the small range numbers in between -100 and 100, however, had some difficulties in range above 100000. This could be a potential explanation of what causes the students failed the mathematic achievement. Forth, the results of numerical comparison task indicate that sixth graders may had presented with components representation in mind and that the eighth graders can presented both the component and/or the holistic representations when needed for the task.
We also test the correlation between the two tasks and the math grades; the result shows that the correlation was significant under the sixth grade but not in the eighth grade and learning disabilities students. Overall, the results suggest that children should learn more to solve the more difficult mathematical problems when get into the junior high school, even they have improved in the numerical representation.
關鍵字(中) ★ 數線評估作業
★ 數量大小判斷作業
★ 概算能力
★ 負數
★ 數量表徵
★ 心理數線
關鍵字(英) ★ numerical comparison task
★ estimation
★ negative numbers
★ numerical representation
★ number-lime estimation task
★ mental number line
論文目次 目次 I
表目次 II
圖目次 III
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與問題 3
第三節 研究限制 3
第四節 主要名詞釋義 3
第二章 文獻探討 6
第一節 概算能力到精算能力的發展 6
第二節 數量表徵的研究 7
第三節 關於本研究 14
第三章 研究方法 16
第一節 實驗一:正負數數線評估作業 16
第二節 實驗二:正負數大小判斷作業 19
第四章 結果與分析 21
第一節 受試 21
第二節 結果分析 21
第五章 綜合討論 41
參考文獻 46
附錄 51
參考文獻 Antell, S. E., & Keatig, D. P. (1983). Perception of numerical invariance in neonates. Child Development, 54(3), 695-701.
Banks, W. P., Fujii, M. S., & Kayra-Stuart, F. (1976). Semantic congruity effects in comparative judgments of magnitudes of digits. Journal of Experimental Psychology: Human Perception and Performance, 2, 435-447.
Berteletti, I., Lucangeli, D., Piazza, M., Dehaene, S., & Zorzi, M. (2010). Numerical estimation in preschoolers. Developmental Psychology, 46(2), 545-551.
Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 41, 189-201.
Brysbaert, M. (1995). Arabic number reading: On the nature of the numerical scale and the orgin of phonological recoding. Journal of Experimental Psychology: General, 124, 434-452.
Butterworth, B. (1999). What counts: How every brain is hardwired for math. New York: Free Press.
Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1-42.
Dehaene, S. (2003). The neural basis of the Weber-Fechner law: A logarithmic mental number line. TRENDS in Cognitive Science, 7(4), 145-147.
Dehaene, S. (2011). The number sense: How the mind creats mathematics. New York: Oxford University Press.
Dehaene, S., & Brannon, E. M. (2011). Space, Time and number in the Brain: Seraching for the foundations of mathematical thought. Lodon: Academis Press (Elsevier).
Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and numerical magnitude. Journal of Experimental Psychology: General, 122, 371-396.
Dehaene, S., Izard, V., Spelke, E., & Pica, P. (2008). Log or linear? Distinct intuitions of the number scale in western and Amazonian indigence cultures. Science, 320, 1217-1220.
Fischer, M. H. (2003). Cognitive representation of negative numbers. Psychological Science, 14(3), 278-282.
Fischer, M. H., & Rottmann, J. (2005). Do negative numbers have a place on the mental number line? Psychology Science, 47, 22-32.
Ganor-Stern, D., & Tzelgov, J. (2008). Negative numbers are generated in the mind. Experimental Psychology, 55(3), 157-163.
Ganor-Stern, D., Pinhas, M., Kalai, A., & Tzelgov, J. (2010). The Quarterly Journal of Eperimental Psychology, 63(10), 1969-1981.
Gilmore, C. K., McCarthy, S. E., & Spelke, E. (2007). Symbolic arithmetic knowledge without instruction. Nature, 447, 589-592.
Gilmore, C. K., McCarthy, S. E., & Spelke, E. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115, 394-406.
Ginsburg, H. P., Choi, Y. E., Lopez, L. S., Netley, R., & Chi, C. Y. (1997). Happy birthday to you: Early mathematical thinking of Asian, South American and U.S. children. In T. Nunes & P. Bryant (Ed.), Learning and Teaching Mathematics: An International Perspective (pp.163-207). Hove, England: Psychology Press.
Gordon, P. (2004). Numberical cognition without words: Evidence from Amazonia. Science, 306, 496-499.
Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103, 17-29.
Hung, Y. H., Hung, D. L., Tzeng, O. J., & Wu, D. H. (2008). Flexible spatial mapping of different notations of numbers in Chinese readers. Cognition, 106, 1441-1450.
Ito, Y., & Hatta, T. (2004). Spatial structure of quantitative representation of numers: Evidence from the SNARC effect. Memory and Cognition, 32(4), 662-673.
Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. PNAS, 106(25), 10382-10385.
Miller, K. F., & Stigler, J. W. (1987). Counting in Chinese: Cultural variation in a basic skill. Cognitive Development, 2, 279-305.
Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519-1520.
Nuerk, H. C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect. Quarterly Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 149-157.
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigence group. Science, 306, 499-503.
Prather, R., & Boroditsky, L. (2003). Left of zero: Representing negative on the mental number-line. Paper presented at the 25th annual meeting of the Cognitive Science Scociety, Boston.
Shaki, S., & Petrusic, W. M. (2005). On the mental representation of negative numbers: Context-dependent SNARC effects with comparative judgments. Psychonomic Bulletin & Review, 12(5), 931-937.
Siegler, R. S., & Booth, J. L. (2004). Development of Numerical Estimation in Young Children. Child Development, 75(2), 428-444.
Siegler, R. S., & Mu, Y. (2008). Chinese children excel on novel mathematics problems even before elementary school. Psychological Science, 19(8), 759-763.
Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representation of numerical quantity. Psychological Science, 14(3), 237-243.
Starkey, P., Spelke, E. S., & Gelman, R. (1990). Numerical abstraction by human infants. Cognition, 36, 97-128.
Stevenson, H. W., Chen, C., & Lee, S. Y. (1993). Mathematics achievement of Chinese, Japanese, and American children: Ten years later. Science, 259, 53-58.
Thompson, C. A., & Opfer, J. E. (2010). How 15 hundred is like 15 cherries: Effect of progressive alignment on representational changes in numerical cognition. Child Development, 81(6), 1768-1786.
Thompson, C. A., & Siegler, R. S. (2010). Linear numerical-magnitude representations aid children’s momory for numbers. Psychological Science, 21(9), 1274-1281.
Tse, C. S., & Altarriba, J. (2010). The revetation of the negative side of a mental number line depends on list context: Evidence from a sign priming paradigm. European Journal of Cognitive Psychology, 22(8), 1248-1260.
Tzelgov, J., Ganor-Stern, D., & Maymon-Schreiber, K. (2009). The representation of negative numbers: Exploring the effects of mode of processing and notation. The Quarterly Journal of Experimental Psychology, 62(3), 605-624.
Ward, J. (2010). The Student’s Guide to Cognitive Neurosience. New York: Psychology Press.
Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749-750.
Zebian, S. (2005). Linkages between number concepts, spatial thinking, and directionality of writing: The SNARC effect and reverse SNARC in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture, 5(1-2), 165-190.
林亮宜 (1982)。學前兒童的數概念:數數學與比較數學。國立台灣大學心理學研究所碩士論文,未出版,台北。
洪意惠 (2006)。The influence of experience on the SNARC effect – The mapping between sequential information and special representaion。國立中央大學認知神經科學研究所碩士論文,未出版,桃園。
徐堅閩 (2010)。數字單位的SNARC研究-The reversal of SNARC on number unit。私立輔仁大學心理學研究所碩士論文,未出版,臺北。
蔡亞倫 (2001)。學前與國小一年級兒童數字符號表徵能力與數能力的關係。國立中正大學心理學研究所碩士論文,未出版,嘉義。
指導教授 柯華葳(Hwa-wei Ko) 審核日期 2012-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明