博碩士論文 993202601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:172 、訪客IP:3.139.240.253
姓名 黎亞迪(Bakhtiar Cahyandi)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 含單粉土層之砂土地盤於強震作用下之受震反應
(SEISMIC RESPONSE OF A SANDY STRATUM WITHA SILT LAYER UNDER STRONG GROUND MOTIONS)
相關論文
★ 鋼筋混凝土構架制震設計與分析★ 版牆結構隔減震設計
★ 連續壁防治土壤液化之初步研究★ 符合設計譜人工地震之相位角對樓板反應譜之影響
★ 樁基礎橋梁地震反應分析★ 利用連續壁防治土壤液化之探討
★ Nakamura方法估算土壤第一模態頻率之適用性研究★ 黏性土層中隧道開挖引致之地盤沉陷及破壞機制
★ 側向非均勻土層之地表受震反應★ 砂土層中井樁承受反覆水平荷重之初步研究
★ 以人工地震探討二維不規則土層對建築物受震反應的影響★ 以離心模型試驗探討高含水量黏性背填土 加勁擋土牆之穩定性
★ 以加勁長度改善高含水量下粘土加勁擋土牆穩定性之研究★ 內扶壁在基一區(K1)對連續壁變位之影響
★ 打樁引致非均質土層地表振動數值之模擬★ 深開挖工程與鄰近捷運隧道受震反應的三維分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 具液化潛能的砂土層中有可能存在一層滲透係數低的粉土層,於地震作用下在粉土層底部會產生具有高孔隙水壓的水膜。從大地工程的觀點而言,此一水膜會造成地層,尤其是傾斜地層,的滑動。本研究的目的在利用數值模擬的方式闡明P波和S波抵達時間差,具不同特性之地震動以及粉土層在某一時間發生開裂等對含有單一粉土層且具液化潛能的砂土層之受震反應的影響。
本研究採用三維有效應力有限元素程式。首先以離心機試驗的結果進行驗證該程式的正確性,然後建立了14組分析模式,其中八組用來了解P波和S波抵達時間差和具不同特性之地震動的影響,剩下的六組則是用來探討粉土層在某一時間發生開裂時對含有單一粉土層且具液化潛能的砂土層之受震反應的影響。本研究使用了三個真實地震的歷時記錄和一個在離心機試驗箱底部量測到的諧和震動歷時。分析的結果以地表的水平位移與沉陷以及孔隙水壓呈現。
對於三維土層模型受到單一方向的地震作用時,諧和地震歷時會造成比實際地震較大的反應,顯示以諧和地震歷時來預測反應時會比較保守。粉土層的開裂會使該土層底部的高超額孔隙水壓以較快的速率消散而導致較大的沉陷。粉土層的開裂也會造成上面土壤的超額孔水壓突然增加,而下面土壤的超額孔水壓突然降低,如此使得粉土層上面的土壤的超額孔隙水壓會較沒開裂者為大,也因此有可能使原本粉土層沒開裂時不會液化的上層土壤液化,至於粉土層下面的土壤則呈現相反的趨勢。此外,與不開裂的情形比較,粉土層的開裂會使得粉土層底部的土壤的超額孔隙水壓散速率增快,但此速率隨深度而遞減。
摘要(英) The presence of silt layer with small permeability may exist in the liquefiable sandy ground and can produce the water film beneath silt layer with high pore water pressure under earthquakes. From the geotechnical point of view, the water film can cause instability of ground especially for slope ground. The objectives of this study is to clarify the effects of interval of P-wave and S-wave arrival, input motions with different of characteristics and crack inside the silt layer at certain time on the seismic responses of ground of liquefiable sand stratum with a silt layer through numerical simulations.
A nonlinear 3D effective stress finite element program was used in this study. Its validity was first validated by comparing with centrifuge results. Then, a total of 14 models were constructed; eight of the models were used to gain a better understanding the effect of interval of P-wave and S-wave arrival and input motions with different characteristics and the remaining six models were used to investigate the effect of possible crack inside silt layer at certain time on the seismic responses of ground of liquefiable soil sand stratum. Three real earthquakes with different characteristics and one harmonic loading measured in a centrifuge test were used in this study. Horizontal displacement and settlement on the surface and excess pore water pressure were presented for all models.
For 3D model with 1D input motion, in general, the response behavior of liquefiable soil stratum by using Harmonic input is much larger than that by using the real earthquakes, meaning that the prediction by using Harmonic input is very conservative. The crack in the silt layer can lead to the larger settlement due to the faster dissipation of EPWP beneath the silt layer and the breakage of silt layer can lead to the sudden decrease in EPWP in the soil beneath the silt layer and sudden increase in EPWP in the soil above the silt layer; such a phenomenon may cause the soil above the silt layer to have the larger EPWP and that below the silt layer to have smaller EPWP. Sometimes the upward movement of pore water may cause the soil to liquefy, which will not occur without the breakage of silt layer. The crack in the silt layer leads to the faster dissipation of EPWP below the silt layer; such faster dissipation progresses from the location beneath the silt layer to the bottom of the soil stratum.
關鍵字(中) ★ 液化
★ 開裂
★ 數值模擬
★ 有效應力分析
★ 粉土層
關鍵字(英) ★ liquefaction
★ numerical simulation
★ effective stress analysis
★ silt layer
★ crack
論文目次 摘 要 i
ABSTRACT ii
ACKNOWLEDGEMENTS iii
LIST OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
NOTATIONS xi
CHAPTER 1. INTRODUCTION 1
1.1. Background 1
1.2. Research Objectives 2
1.3. Structures of Thesis 2
CHAPTER 2. LITERATURE REVIEW 3
2.1. Introduction 3
2.2. Liquefaction 3
2.2.1. Definition of Liquefaction 3
2.2.2. Liquefaction Mechanism 3
2.2.3. Liquefaction Hazard 4
2.2.4. Site Investigation 5
2.2.5. Susceptibility of Liquefaction 7
2.3. Liquefaction on non-uniform Soil Stratum (Intralayers of Silt Case) 8
2.4. Phenomenon of Crack Layer in Liquefaction 10
CHAPTER 3. NUMERICAL FORMULATION 12
3.1. Introduction 12
3.2. Basic Equation of Motion for Porous Media 12
3.3. Description of Cap Model and Pore Pressure Model 14
3.4. Numerical Integration 19
CHAPTER 4. VERIFICATION AND VALIDATION 20
4.1. Introduction 20
4.2. Model Description 20
4.2.1. Description of Centrifuge Test 20
4.2.2. Description of Numerical Model 21
4.3. Discussion of Numerical Simulation Result for Pure Silt and Pure Silt with 45 Sand Stone Columns 21
4.3.1. Settlement 21
4.3.2. Excess Pore Water Pressure 23
CHAPTER 5. NUMERICAL RESULTS AND DISCUSSIONS 25
5.1. Introduction 25
5.2. Effect of Interval between P-wave and S-wave Arrival 25
5.2.1. Input Motion Description 25
5.2.2. Model Description 26
5.2.3. Result and Discussion 26
5.2.4. Summary 27
5.3. Effect of Input Motion 27
5.3.1. Input Motion Desription 28
5.3.2. Results and Discussions 28
5.3.3. Cause of Rebound in Settlement 32
5.3.4. Summary 33
5.4. Effect of Crack Element inside Silt Layer at Certain Time 34
5.4.1. Model Description 34
5.4.2. Input Motion Description 34
5.4.3. Results and Discussion 35
5.4.4. Summary 38
CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 39
6.1. Conclusions 39
6.2. Recommendations 40
REFERENCES 41
參考文獻 1. Kokusho T. (1999), “Water Film in Liquefied Sand and Its Effect on Lateral Spread”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No.10, pp 817-826
2. Karbasi M.S., Byrne P.M. (2007), “Seismic Liquefaction, Lateral Spreading, and Flow Slides: a Numerical Investigation into Void Redistribution”, Canadian Geotechnical Journal, Vol. 44, No. 7, pp. 873-890
3. Olson S.M., Stark T.D. (2002), “Liquefied Strength Ratio from Liquefaction Flow Failure Case Histories”, Canadian Geotechnical Journal, Vol. 39, pp. 629-647
4. Kokusho T., Kojima T. (2002), “Mechanism for Post-Liquefaction Water Film Generation in Layered Sand”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.128, No.2, pp. 129-137
5. Jou, J.J. (2000), “Seismic Responses Analysis of Pile Foundations of Bridges”, PhD. Thesis, Department of Civil Engineering, National Central University, Chungli, Taiwan (in Chinese)
6. Wijaya M.N., Chen H.T. (2010), “ Seismic Response of Bridge Pile Foundation in a liquefiable Soil Stratum Underlain by Irregular Bedrock”, Master Thesis, Department of Civil Engineering, National Central University, Chungli, Taiwan
7. Adalier K., Elgamal A-W., Meneses J., Baez J.I. (2003), “Stone Columns as Liquefaction Countermeasure in Non-Plastic Silty Soils”, Soil Dynamics and Earthquake Engineering, Vol. 23, No. 7, pp. 571-584
8. Fiegel G.L., Kutter B.L., (1994), “Liquefaction Mechanism for Layered Soil”, Journal of Geotechnical Engineering, Vol. 120, No. 4, pp. 737-755
9. Nesgaard E., Byrne P.M. (2005), “Flow Liquefaction due to Mixing of Layered Deposits”,
10. Liu L., Dobry R. (1997), “Seismic Response of Shallow Foundation on Liquefable Sand”, Proc. Geotechnical Earthquake Engineering Satellite Conf., Japanese Geotechncial Society, pp. 103-108
11. Elgamal A-W., Zeghal M., Taboada V., Dobry R. (1996), “Analysis of Site Liquefaction and Lateral Spreading using Centrifuge Testing Records”, Soils and Foundations, Japanese Geotechnical Technology, Vol. 36, No. 2, pp 111-121
12. Kramer, Steven L. (1996), Geotechnical Earthquake Engineering, Prentice-Hall Inc., Englewood Cliffs, N.J., 653
13. Pacheco M.P., Altschaeffl A.G., Chameau J.L. (1989), “Pore Pressure Prediction in Finite Element Analysis”, International Journal for Numerical Methods in Engineering; 13:477-491.
14. Malvick E.J., Kutter B.L., Boulanger R.W. (2008), “Postshaking Shear Strain Localization in a Centrifuge Model of a Saturated Sand Slope”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 134, No. 2, pp 164-174
15. Trabelsi H., Jamei M., Zenzri H., Olivell S., (2011), “Crack Pattern in Clayey Soils: Experiment and Modelling”, International Journal For Numerical and Analytical Methods in Geomechanics,
16. Chertkov V. (2008), “The Geometry of Soil Crack Networks”, The Open Hydrology Journal,pp 34-48
17. Peron H., Delenne J., Laloui L., El Youssoufi M., (2009), “Discrete Element Modelling of Drying Shrinkage and Cracking of Soils”, Journal of Computer and Geotechnics, pp 61-69
18. Kokusho T., (2003), “Current State of Research on Flow Failure Considering Void Redistribution in Liquefied Deposits”, Soil Dynamics and Earthquake Engineering, pp 585-603
19. Kulasingam R., Malvick E. J., Boulanger R.W., Kutter B. L., (2004), “Stress Loss and Localization at Silt Interlayers in Slopes of Liquefied Sand”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 11, ASCE, pp 1192-1202
20. Simatupang R. M., (2011), “ A Numerical Investigation on Stone Columns as a Countermeasure for Liquefaction of Sandy Soil Stratum With Intralayers of Silt”, Master Thesis, Department of Civil Engineering, National Central University, Chungli, Taiwan
21. Poulos S.J., Castro., France J.W. (1985), “Liquefaction Evaluation Procedure” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 111, No.6,pp 772-793
22. Lee C.J., Wei Y.C., Lien H.C., Chen H.T. (2011), “Centrifuge Modeling on the Seismic Responses of Sandy Deposit with a Thin Silt Seam”, 8th International Conference on Urban Earthquake Engineering, Tokyo Institute of Technology, Tokyo, Japan
指導教授 陳慧慈(HUEI-TSYR CHEN) 審核日期 2012-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明