博碩士論文 983202100 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.145.154.251
姓名 吳俊廣(Jyun-Guang Wu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 塑鉸極限破壞數值模型開發
(Development of Hinges Ultimate-destroyed Model)
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 應用多項式摩擦單擺支承之隔震橋梁研究
★ 橋梁含多重防落裝置之極限狀態動力分析★ 強震中橋梁極限破壞三維分析
★ 隔震橋梁之最佳化結構控制★ 跨越斷層橋梁之極限動力分析
★ 橋梁直接基礎搖擺之極限分析★ 考量斷層錯動與塑鉸破壞之橋梁極限分析
★ Impact response and shear fragmentation of RC buildings during progressive collapse★ 應用多項式滾動支承之隔震橋梁研究
★ Numerical Simulation of Bridges with Inclined★ 橋梁三維極限破壞分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 依據過去地震經驗發現橋梁常遭受嚴重之損害,而橋梁支承裝
置、橋柱之損壞與落橋所造成的損失更為嚴重,為模擬橋梁於強震中
極限破壞情形,本研究旨在開發新纖維元素模型(Fiber Element)建立橋
梁塑鉸處構件,模擬橋梁於強震中塑鉸產生之高度非線性行為。
本研究採用向量式有限元素(Vector Form Intrinsic Finite Element)
為結構動力分析方法,此方法適用於處理大變形、大變位、材料非線
性與剛體運動等問題。過去VFIFE 使用雙線性彈簧元素(Bilinear Spring)
模擬所有非線性行為,即構件受力達一定強度,全斷面降伏並同時進
入塑性行為,但是此行為並無法精準模擬真實斷面降伏時,斷面由外
至內依序降伏之實際情況。
為模擬斷面實際降伏情況, 本研究引入纖維元素方法(Fiber
Element Method) 取代雙線性彈簧元素(Bilinear Spring) ,以纖維元素的
應力應變數值計算準確模擬塑鉸欲達極限破壞之高度非線性行為,並
配合Newmark-β法增量迭代計算程序,更新纖維元素方法中桿件狀態
判定參數與斷面參數程序計算桿件內力,再經由算例分析,證實所發
展之新元素與新分析方法之正確性。
最後以一座三跨剛性支承簡支橋梁為目標,進行參數分析探討在
三種不同測站之強震下,橋墩柱底塑鉸分別使用纖維元素與雙線性彈
簧元素時,橋梁防止落
摘要(英) In the past extreme earthquake, observed from the damaged bridges,
bearing failure, column failure and deck unseating caused a more serious
loss. Therefore, it is full of curiosity that how large earthquake will cause a
bridge to collapse and how the ultimate state will be. This study is aimed to
develop the new model of Fiber Element in plastic hinge zone, and to
simulate high-degree nonlinear behavior of bridges by strong motion.
The Vector Form Intrinsic Finite Element (VFIFE), a new
computational method is adopted in this study because the VFIFE has the
superior in managing the engineering problems with material nonlinearity,
discontinuity, large deformation and arbitrary rigid body motions of
deformable bodies. In the past, VFIFE was used Bilinear Spring to analyze
all nonlinear behaviour. It means whole section is yielding and does the
plastic behaviour with the enough force. But this is not fit accurately with
the real condition of yielding section.
In order to analyze the real condition of the section, using stress-strain
relation to calculate and analyze the high-degree nonlinear behaviour with
ultimate-destroying of plastic hinge. Because of the formulation of
Newmark-β, it’s very important to renew the iteration type of Fiber
Element Method to calculate the element internal force. Through numerical
simulation of examples, the developed elements and analysis methods are
verified to be feasible and accurate.
Finally, we use many contact models in three elastic rods and analyze
an simple bridge to investigate the extreme functions of the columns and
unseating prevention devices between Fiber Element and Bilinear Spring,
and predicting the collapse situation of target bridge.
關鍵字(中) ★ 防落裝置
★ 動力分析
★ 向量式有限元素
★ 纖維元素
關鍵字(英) ★ dynamic analysis
★ unseating prevention devices
★ Fiber Element
★ VFIFE
論文目次 目 錄IV
表 目 錄VII
圖 目 錄VIII
第一章 緒論1
1.1 研究動機與目的1
1.2 文獻回顧3
1.2.1 纖維元素法6
1.3 論文架構7
第二章 向量式有限元素法9
2.1 結構離散模式10
2.2 質點運動方程10
2.3 運動軌跡離散化12
2.4 變形與內力計算13
2.5 Newmark-β 直接積分計算程序23
第三章 纖維元素方法36
3.1 前言36
3.2 廣義力量與變形定義36
3.3 梁元素公式37
3.4 狀態判定41
3.5 纖維元素參數與模型47
3.6 纖維元素基本公式48
3.7 纖維梁元素非線性計算流程51
3.8 纖維元素法於向量式有限元素中之計算程序57
第四章 數值算例驗證69
4.1 含纖維元素法之向量式有限元素分析69
4.1.1 雷利阻尼分析(Rayleigh Damping Analysis)69
4.1.2 纖維元素模型斷面數與纖維數分析70
4.1.3 降伏前後纖維元素模型與雙線性彈簧元素模型分析74
4.2 小結77
第五章 橋梁實例分析與參數研究89
5.1 目標橋梁與分析模型89
5.2 數值分析模型90
5.3 參數研究94
5.3.1 動力歷時分析結果95
5.4 小結101
第六章 結論與未來展望126
6.1 結論126
6.2 未來展望129
參考文獻130
附圖132
參考文獻 [1] Ting, E. C., Shih, C. and Wang, Y. K. (2004), "Fundamentals of a
Vector Form Intrinsic Finite Element: Part I. Basic Procedure and a
Plane Frame Element," Journal of Mechanics, Vol.20, No.2, pp.
113-122.
[2] Ting, E. C., Shih, C. and Wang, Y. K. (2004), "Fundamentals of a
Vector Form Intrinsic Finite Element: Part II. Plane Solid Elements,"
Journal of Mechanics, Vol.20, No.2, pp. 123-132.
[3] Shih C., Wang, Y. K. and Ting, E. C. (2004), "Fundamentals of a
Vector Form Intrinsic Finite Element: Part III. Convected Material
Frames and Examples," Journal of Mechanics, Vol.20, No.2, pp.
133-143.
[4] Wang, C. Y., Wang, R. Z., Kang, L. C. and Ting, E. C. (2004),
"Elastic-Plastic Large Deformation Analysis of 2D Frame
Structure," Proceedings of the 21st International Congress of
Theoretical and Applied Mechanics (IUTAM), SM1S-10270,
Warsaw, Poland, August 15-21.
[5] Wu, T. Y., Wang, R. Z. and Wang, C. Y. (2006), "Large Deflection
Analysis of Flexible Planar Frames," Journal of the Chinese Institute
of Engineers, Vol. 29, No. 4, pp. 593-606.
[6] Wang, C. Y., and Wang, R. Z. (2008), “Nonlinear Dynamic Analysis
of Space Frame Structures,” Proceedings of the 6th International
Conference on Computation of Shell and Spatial Structures, Cornell
University, Ithaca, NY, USA.
[7] Taucer, F. F., Spacone, E., and Filippou, F. C. (1991), “A Fiber
Beam-Column Element for Seismic Response Analysis of
Reinforced Concrete Structures,” No. UCB/EERC-91/17, Earthquake
Engineering Research Center, University of California, Berkeley.
[8] Watanabe, G., Kawashima, K.(2004), "Numerical Simulation of
Pounding of Bridge Decks," 13th World Conference on Earthquake
Engineering.
[9] 王仁佐 (2005),「向量式結構運動分析」,國立中央大學土木工
程學研究所博士論文,指導教授:王仲宇、盛若磐。
[10] 莊清鏘、陳詩宏、王仲宇 (2006),〝向量式有限元於結構被動控
制之應用〞,固體與結構之工程計算-2006 近代工程計算論壇,
第O1-O25 頁。
[11] 陳柏宏 (2008),「運用向量式有限元素法於隔震橋梁之非線性動
力分析」,國立中央大學土木工程學研究所碩士論文,指導教授:
李姿瑩。
[12] 陳開天 (2010),「橋梁碰撞效應研究」,國立中央大學土木工程
學研究所碩士論文,指導教授:李姿瑩。
[13] 汪栢靈 (2010),「橋梁極限破壞分析與耐震性能研究」,國立中
央大學土木工程學研究所碩士論文,指導教授:李姿瑩。
指導教授 李姿瑩(Tzu-Ying Lee) 審核日期 2012-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明