博碩士論文 993202095 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.17.181.21
姓名 李明憲(Ming Shian)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 運輸設施生命週期管理維護策略訂定之研究
(Comparison of Transportation Infrastructure Life-cycle Management Strategies)
相關論文
★ 緊急疏散指示系統之設計與評估★ 考量擾動因子情況下傳統鐵路時刻表建置合併於高速鐵路時刻表模型之回顧與探討
★ 整合八分樹結構與適應性網格於光達資料重建室內建物三維模型之研究★ 交通改善計畫對區域交通汙染排放之影響-以臺鐵桃園段高架化為例
★ 合作與競爭賽局策略下之行人模擬★ 結合最適控制與養護門檻策略之運輸設施生命週期管理
★ 動態混合模式架構下之運輸設施生命週期管理求解方法研究★ 應用相關均衡賽局與時空網路於行人模擬之研究
★ 供應鏈策略應用於營建產業之研究★ 道路防災保護決策最佳化之研究
★ 臺鐵桃園段高架化建設計畫對區域交通汙染排放影響之探討★ 考量避開擁塞行為之細胞自動機行人模擬模式
★ 動態緊急疏散指示系統之設計與評估★ 市區公車路線調整最佳化模式
★ 市區公車路線及排程最佳化模式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 運輸設施的狀態對於一個國家來說相當的重要,狀態的好壞可以直接影響到經濟的發展以及國民的生活,要讓運輸設施都保持在最佳的狀態就必須用生命週期管理的角度來做維護,並使用最佳化的方式來做規劃,但使用最佳化方式產生出來的維修策略往往都與實務單位的工作流程不相容,一般實務的工作流程為經由儀器或者人工的方式測量而得設施的狀態值,決策者再參考測量數據做維修方式的決策,因此很難理解以最佳化方式所規劃出來的預擬維修計畫,所以最佳化的方式很難讓實務單位所採納,本研究所提出的維修門檻值策略跟實務單位的工作流程較相似,同時提出門檻值調整的方法,探討維修門檻值策略藉由門檻值的調整所得到效益,並且將維修門檻值策略與預擬計畫策略(也就是一般傳統最佳化的決策方式)來做分析與比較。
在過去的研究中,對於運輸設施最佳化所提出的相關數學模式都不是相當完備,然而使用不完備的模式求解出來的結果往往會與實際情況有落差,因此本研究使用動態混合模式的架構來建立模型,動態混合模型是由事件產生器、有限狀態機、模式選擇器及切換系統所組合而成的,使用此種架構所建立的模型可以同時考量設施不同的劣化方式以及不同的維修效果,使求解出來的結果可以與真實情況更接近。預擬計畫策略與維修門檻值策略在大型問題上的求解都有一定的困難度,因此本研究使用拉式鬆弛演算法來求解預擬計畫的問題。
最後以桃園縣大溪鎮的路網作為實例驗證的目標,使用不同的預算來探討預擬計畫策略與維修門檻值策略的效果差異,藉由測試的結果整理出一些建議,以利實務單位在做決策的時候可以當作參考的依據。
摘要(英) The condition of transportation infrastructure is very important for a country. The infrastructure has a direct impact on the economic development and the quality of life for people. In order to improve the functionality of transportation infrastructure, the concept of life-cycle management has been introduced to the infrastructure maintenance decision-making process. In practice, transportation agencies measure the conditions of transportation facilities by equipment or manual inspection, and then make maintenance decisions based on the measurements and maintenance thresholds. However, most of the optimization methods generate predetermined maintenance plans (a detailed future plan for the types and timings of maintenance actions), which are incompatible with the workflow of the transportation management agencies and difficult to interpret. As a result, the pre-determined plans are not well accepted by transportation agencies in practice.
The past mathematical models for optimizing the transportation infrastructure are not realistic in many ways. Therefore, the solutions obtained by these models are not optimal in the actual situations. To address the problem, a method of finding the optimal maintenance thresholds is proposed in this research. This study uses hybrid dynamic mode (HDM) to describe the transportation infrastructure. The dynamic hybrid mode includes event generator, finite state machine, mode selector and switched systems. This model considers different deterioration and maintenance effects simultaneously. As a result, the solutions are expected to be superior in the actual situations. However, HDM is difficult to solve for large problems. A Lagrangian relaxation algorithm is developed to find the solutions for the pre-determined plan strategies efficiently.
The road network of Dasi Township, Taoyuan County, is used as the numerical example to test the proposed methodology. Various levels of budget are tested to analyze the differences between predetermined plan strategy and maintenance threshold strategy. Finally, the conclusions and future directions for research are provided.
關鍵字(中) ★ 維修決策
★ 生命週期管理
★ 養護門檻
★ 混合動態模式
關鍵字(英) ★ maintenance decision-making
★ life-cycle management
★ maintenance threshold
★ hybrid dynamic model
論文目次 摘要
Abstract
圖目錄
表目錄
第一章. 緒論 ............................................................. 1
1.1 研究背景與動機 ................................................... 1
1.2 研究目的 ......................................................... 2
第二章. 文獻回顧 ......................................................... 4
2.1 生命週期管理決策最佳化 ........................................... 4
2.2 動態混合系統 ..................................................... 6
2.3 門檻值維修策略 ................................................... 6
2.4 鋪面設施評估指標 ................................................. 7
2.5 拉式鬆弛演算法 .................................................. 11
第三章. 研究方法 ........................................................ 13
3.1 問題描述 ........................................................ 13
3.2 決策方法定義 .................................................... 14
3.2.1 預擬計畫策略 .................................................. 14
3.2.2 維修門檻值策略 ................................................ 15
3.3 動態混合模型建構 ................................................ 16
3.3.1 動態混合模型介紹 .............................................. 16
3.3.2 事件產生器 .................................................... 19
3.3.3 有限狀態機(Finite State Machine) .............................. 27
3.3.4 模式選擇器(Mode Selector) ..................................... 29
3.3.5 切換系統(Switched Systems) .................................... 31
3.3.6 將非線性問題修訂為線性問題 .................................... 33
3.3.7 將動態混合模型轉換為數學規劃問題 .............................. 34
3.4 應用拉式鬆弛法求解預擬計畫策略問題 .............................. 38
3.4.1 求解流程 ...................................................... 38
3.4.2 求解問題與鬆弛對象選擇 ........................................ 39
3.4.3 拉式乘數更新方式 .............................................. 41
3.4.4 上限解、下限解更新方式與不可行解的修正方式 .................... 43
第四章. 實例驗證 ........................................................ 46
4.1 案例描述 ........................................................ 46
4.2 參數設定 ........................................................ 47
4.3 測試情境 ........................................................ 48
4.4 測試結果與分析 .................................................. 49
4.4.1 三個維修門檻值策略與四個維修門檻值策略之比較 .................. 49
4.4.2 維修門檻值策略使用漸變門檻之效益 .............................. 51
4.4.3 維修門檻值策略與預擬計劃策略之比較 ............................ 67
4.4.4 使用拉式鬆弛演算法求解預擬計畫問題之結果 ...................... 69
第五章. 結論與建議 ...................................................... 71
參考文獻 ................................................................ 73
參考文獻 1. American Association of State Highway and Transportation Officials (1993). AASHTO Guide for Design of Pavement Structures 1993. American Association of State Highway and Transportation Officials, Washington, DC.
2. Bemporad, A. and M. Moran (1999). Control of systems integrating logic, dynamics, and constraints. Automatica 35, 407–428.
3. Ben-Akiva, M., F. Humplick, S. Madanat, and R. Ramaswamy (1991). Infrastructure Management under Uncertainty: The Latent Performance Approach. Cambridge, MA, USA: Department of Civil Engineering, Massachusetts Institute of Technology.
4. Ben-Akiva, M., F. Humplick, S. Madanat, and R. Ramaswamy (1993). Infrastructure management under uncertainty: Latent performance approach. Journal of Transportation Engineering 119(1), 43–58.
5. Black, M., A. T. Brint, and J. R. Brailsford (2005). Comparing probabilistic methods for the asset management of distributed items. Journal of Infrastructure Systems 11(2), 102-109.
6. Branicky, M. (1998). Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Transactions on automatic control 43(4), 475–482.
7. Carnahan, J. V., W. J. Davis, M. Y. Shahin, P. L. Keane, and M. I. Wu (1987). Optimal maintenance decisions for pavement management. Journal of Transportation Engineering 113(5), 554-572.
8. Chu, C.-Y. and P. L. Durango-Cohen (2008). Incorporating maintenance effectiveness in the estimation of dynamic infrastructure performance models. Computer-Aided Civil and Infrastructure Engineering 23(3), 174–188.
9. Chu, J. C. and Y.-J. Chen (2012). Optimal threshold-based network-level transportation infrastructure life-cycle management with heterogeneous maintenance actions. Transportation Research Part B.
10. Durango-Cohen, P. and P. Sarutipand (2009). Maintenance optimization for transportation systems with demand responsiveness. Transportation Research Part C 17(4), 337–348.
11. Durango-Cohen, P. L. (2007). A time series analysis framework for transportation infrastructure management. Transportation Research Part B 41(5), 493–505.
12. Durango-Cohen, P. L. and P. Sarutipand (2007). Capturing interdependencies and heterogeneity in the management of multifacility transportation infrastructure systems. Journal of Infrastructure Systems 13(2), 115-123.
13. Golabi, K. and P. Pereira (2003). Innovative pavement management and planning system for road network of portugal. Journal of Infrastructure Systems 9(2), 75–80.
14. Golabi, K. and R. Shepard (1997). Pontis: A system for maintenance optimization and improvement of US bridge networks. Interfaces 27(1), 71–88.
15. Jido, M., T. Otazawa, and K. Kobayashi (2008). Optimal repair and inspection rules under uncertainty. Journal of Infrastructure Systems 14(2), 150–158.
16. Prozzi,J.A (2001).Modeling pavement performance by combining field and experimental data. Transportation Research Record 1699, Transportation Research Board, National Research Council, Washington, D.C.,87-94.
17. Khurshid, M., M. Irfan, and S. Labi (2011). Optimal performance threshold determination for highway asset interventions: Analytical framework and application. Journal of Transportation Engineering 137(2), 128–139.
18. Kuhn, K. (2010). Network-Level Infrastructure Management Using Approximate Dynamic Programming. Journal of Infrastructure Systems 16, 103–111.
19. Labi, S. (2004). Effectiveness of highway pavement seal coating treatments. Journal of Transportation Engineering 130(1), 14–23.
20. Labi, S. and K. C. Sinha (2003). Measures of short-term effectiveness of highway pavement maintenance. Journal of Transportation Engineering 129(6), 673–683.
21. Livneh, M. (1998). Simplified formulation of virgin and overlaid pavement deterioration models. Journal of Infrastructure Systems 4(2), 63–70.
22. Lytton, R. L. (1987). Concepts of pavement performance prediction and modeling. In Second North American Conference on Managing Pavements Proceedings 2, 2.3–2.19.
23. Madanat, S. and M. Ben-Akiva (1994). Optimal inspection and repair policies for infrastructure facilities. Transportation Science 28(1), 55–62.
24. Madanat, S. M., M. G. Karlaftis, and P. S. McCarthy (1997). Probabilistic infrastructure deterioration models with panel data. Journal of Infrastructure Systems 3(1), 4–9.
25. Markow, M. J. (1990). Life-cycle cost evaluation of the effects of pavement maintenance. Transportation Research Record 1276, 37–47.
26. Marshall L. Fisher (1981). The Lagrangian Relaxation Method for Solving Integer Programming Problems. Management Science, 27(1), 1-18.
27. Mbwana, J. R. and M. A. Turnquist (1996). Optimization modeling for enhanced network-level pavement management system. Transportation Research Record 1524, 76–85.
28. Mishalani, R. G. and S. M. Madanat (2002). Computation of infrastructure transition probabilities using stochastic duration models. Journal of Infrastructure Systems 8(4), 139–141.
29. N.D. Lea International Ltd (1995). Modelling Road Deterioration and Maintenance Effects In HDM-4. RETA 5549-REG Highway Development and Management Research Final Report.
30. Ng, M., D. Lin, and S. Waller (2009). Optimal Long-Term Infrastructure Maintenance Planning Accounting for Traffic Dynamics. Computer-Aided Civil and Infrastructure Engineering 24(7), 459–469.
31. Ouyang, Y. (2007). Pavement resurfacing planning for highway networks: parametric policy iteration approach. Journal of Infrastructure Systems 13, 65-71.
32. Ouyang, Y. and S. Madanat (2006). An analytical solution for the finite-horizon pavement resurfacing planning problem. Transportation Research Part B 40(9), 767–778.
33. Paterson, W. D. O. (1990). Quantifying the effectiveness of pavement maintenance and rehabilitation. Proceedings of the 6th Road Engineering Association of Asia and Australia Conference.
34. Ricardo, O.D.S., Silvrano D.N., and Marcio M. D. F.(2003). Improving Pavement With Long-Term Pavement Performance: Products for Today and Tomorrow. U.S. Department of Transportation, publication NO. HRT-06-109.
35. Robelin, C. and S. Madanat (2007). History-dependent bridge deck maintenance and replacement optimization with markov decision processes. Journal of Infrastructure Systems 13(3), 195–201.
36. Sayers, M. W. and Karamihas, S. M. (1998).The Little Book of Profiling-Base Information about Measuring and Interpreting Road Profiles, University of Michigan, Ann Arbor.
37. Smilowitz, K. and S. Madanat (2000). Optimal inspection, maintenance and rehabilitation policies for networks of infrastructure facilities under measurement and forecasting uncertainty. Journal of Computer-Aided Civil and Infrastructure Engineering 15(1), 5-13.
38. Task Force on Pavements and the AASHTO (2001). Pavement Management Guide. Washington, DC, USA: American Association of State Highway and Transportation Officials.
39. Torrisi, F. and A. Bemporad (2004). HYSDEL-a tool for generating computational hybrid models for analysis and synthesis problems. IEEE Transactions on Control Systems Technology 12(2), 235–249.
40. Uchida, K. and S. Kagaya (2006). Development of life-cycle cost evaluation model for pavements considering drivers’ route choices. Transportation Research Record 1985, 115–124.
41. Zhang, H., G. Keoleian, M. Lepech, and A. Kendall (2010). Life Cycle Optimization of Pavement Overlay Systems. Journal of Infrastructure Systems 16 (4), 310 –322.
42. 江建利(2004),以專家系統應用在廠務監控系統之研究-以廢氣處理系統為例,國立成功大學碩士論文,台南市。
43. 林仲璋(2010),以作業方案分析評選效益後勤實施方案,國立台灣科技大學工業管理系碩士論文,台北市。
44. 張其教(2001),柔性路面網級養護管理維修系統建立之研究,國立中央大學土木工程學系博士論文,桃園縣中壢市。
45. 鼎漢國際工程顧問股份有限公司(2006),桃園都會區整理運輸系統分析及需求模式之建立與應用期末報告書。
指導教授 朱致遠(James C.Chu) 審核日期 2012-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明