博碩士論文 993202101 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.147.68.100
姓名 劉育安(Yu-An Liu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 複合載重下三維多裂縫之M-積分問題
相關論文
★ 高強度鋼筋加勁之超高性能纖維混凝土懸臂梁於反覆載重作用下之撓曲行為★ 耦合結構牆受近斷層地震作用之行為
★ 高爐石高韌性纖維混凝土(ECC)之開發與自癒合研究★ 混凝土修補試體之有限元素分析
★ 黏土層中併行潛盾隧道互制現象之有限元素分析★ 降水引致單樁基礎行為之有限元素分析
★ 斷裂式有限元素法之網格策略與向量化/平行化加速運算★ 潛盾隧道開挖沉陷之有限元素分析
★ 降水引致單椿基礎負摩擦力行為之有限元素分析★ 緩衝材料熱傳導性質與放射性廢料處置場溫度效應
★ 黏土層中潛盾隧道開挖沉陷之有限元素分析★ 柔性鋪面之績效評估與非均佈荷重效應
★ 用過核廢料深層地下處置設計之研究★ 潛盾隧道開挖沉陷與襯砌行為之有限元素分析
★ 核廢料地下處置之熱傳導及初步熱應變分析★ 柔性鋪面承載之非線性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) M-積分是研究具有裂縫之物體破壞行為之重要參數。本論文結合有限元素法研究針對具有多裂縫之三維線彈性材料物體,受混合載重作用下,計算其M-積分的數值分析。首先依序針對具有任意形狀之二維裂縫問題以及具有任意形狀之三維裂縫問題,進行M-積分式的理論介紹,其次証明M-積分具有與積分曲面無關的性質。
在三維問題,對單裂縫的M-積分計算結果顯示與積分曲面無關和具有與原點無關的特性;關於多裂縫問題的M-積分計算,考慮一特殊狀況,在一個無限域的線彈性結構體內包含多裂縫,受到遠端均勻載重作用,在此特殊的邊界情況下,選取任意積分原點且任意包含所有裂縫的積分區域,計算出的M-積分值皆會相同。
接著利用不同裂縫間距去探討裂縫間距對於M-積分的影響,而結果呈現出,隨裂縫間距縮小的情況下所得到的M積分值也越小。
二維情況下M-積分的物理意義為裂縫面形成時能量變化的兩倍,三維中M-積分的物理意義則為裂縫面形成時能量變化的三倍。
摘要(英) M-integral is an important parameter for fracture analysis. In this research, a numerical procedure, incorporated with the finite element method, that is developed for calculation of the 3D linear elastic solid subjected to mixed-mode load with cracks. First, we verify M-integral for arbitrary-shaped cracks in 2D problems and the arbitrary-shaped cracks in 3D problems. Second,we verify the property of surface independence.
In 3D single crack problems, the M-integral is verified to be surface independent and origin independent. In 3D multiple cracks problems, the result of M-integral also has the property of surface independence and origin independence on specific boundary conditions.
We also discuss the relation between cracking space and the results of the M-integral.
In 2-D situation, M-integral is equal to twice the surface energy required for the formation of the whole cracks. In 3-D situation, due to the different geometry of the cracks, the M-integral appears to be equal to triple the surface energy required for the formation of the whole cracks.
關鍵字(中) ★ 積分原點無關
★ M-積分
★ 有限元素法
★ 複合載重
★ 裂縫間距
★ 積分曲面無關
關鍵字(英) ★ cracking interval
★ mixed-mode load
★ origin independence
★ surface independent
★ M-integral
論文目次 碩士論文電子檔授權書 #
論文指導教授推薦書 #
論文口試委員審定書 #
摘要 i
ABSTRACT ii
誌謝 iii
目錄 v
圖目錄 viii
表目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 研究方法與論文內容 2
第二章 文獻回顧 3
2.1 J k -積分與M -積分文獻回顧 3
2.1.1 J k -積分文獻回顧 3
2.1.2 M -積分文獻回顧 4
2.2 二維M -積分的分析理論與推導 5
2.2.1 二維單裂縫的M -積分理論 5
2.2.2 二維Mc -積分之物理意義 7
2.2.3 與積分路徑無關特性 10
2.3 二維多裂縫的M-積分 10
2.3.1 二維多裂縫的M-積分理論 10
2.3.2 與積分路徑無關特性 10
2.3.3 與積分原點無關特性 11
第三章 M-積分分析三維單裂縫問題 13
3.1 前言 13
3.2 三維單裂縫的M-積分理論與推導 13
3.3 與積分曲面無關特性 ( surface-independent ) 15
3.4 三維M-積分之物理意義 16
3.5 數值計算範例I:圓盤形裂縫位於圓柱體內部中央處 17
3.5.1 試體尺寸及相關資料 18
3.5.2 有限元素網格分析 18
3.6 數值計算範例II:圓盤形裂縫位於立方體內部中央處 18
3.6.1 試體尺寸及相關資料 19
3.6.2 有限元素計算結果 19
3.6.3 M-積分與積分區域無關之特性 19
3.6.4 混合載重下與積分原點的關係 20
3.7 小結 20
第四章 M-積分計算三維複合載重下多裂縫問題 21
4.1 三維多裂縫之M-積分理論與推導 21
4.2 與積分曲面無關特性(surface-independent): 22
4.3 數值計算範例I:雙圓盤形裂縫位於立方體內部中央處 22
4.3.1 試體尺寸及相關資料 23
4.3.2 有限元素計算結果 23
4.3.3 M-積分與積分區域無關之特性 24
4.3.4 混合載重下與積分原點的關係 24
4.4 數值計算範例II:裂縫間距對於M-積分之影響 24
4.4.1 試體尺寸及相關資料 25
4.4.2 有限元素計算結果 25
第五章 結論與建議 26
5.1 結論 26
5.2 建議 26
參考文獻 46
附錄I M與J k與積分之詳細推導 49
附錄II M -積分與積分路徑( 2D )及與積分曲面( 3D )無關之證明 52
附錄III J k -積分之積分路徑(2-D)及與積分曲面(3-D)無關之證明 55
參考文獻 [1] J.H. Chang , A.J. Chien , “Evaluation of M-integral for anisotropic elastic media with multiple defects”, International Journal of Fracture , Volume 114, Number 3, 2002 , Pages 267-289.
[2] J.H. Chang, D.J. Wu, “Stress intensity factor computation along a non-planar curved crack in three dimensions”, International Journal of Solids and Structures, Volume 44, Issue 2, 15 January 2007, Pages 371-386.
[3] Chao-Shi Chen, Chia-Hau Chen, Ernian Pan , “Three-dimensional stress intensity factors of a central square crack in a transversely isotropic cuboid with arbitrary material orientations”, Engineering Analysis with Boundary Elements, Volume 33, Issue 2, February 2009, Pages 128-136.
[4] G.Z. Wang, X.L. Liu, F.Z. Xuan, S.T. Tu, “Effect of constraint induced by crack depth on creep crack-tip stress field in CT specimens”, International Journal of Solids and Structures, Volume 47, Issue 2, February 2010, Pages 51-57.
[5] V.I. Kushch, A.S. Sangani , “Stress intensity factor and effective stiffness of a solid containing aligned penny-shaped cracks” ,International Journal of Solids and Structures, Volume 37, Issue 44, November 2000, Pages 6555-6570.
[6] Yi-Heng Chen,“M-integral analysis for two-dimensional solids with strongly interacting microcracks. Part I: in an infinite brittle solid” ,International Journal of Solids and Structures, Volume 38, Issue 18, May 2001, Pages 3193-3212.
[7] Han J.J., Dhanasekar M., “Modelling cracks in arbitrarily shaped
finite bodies by distribution of dislocation”, International Journal of Solid and Structures, Volume 41, Issue 2, January 2004, Pages 399-411.
[8] Jan Sladek , Vladimir Sladek, “Evaluation of the Elastic T-stress in Three-dimensional Crack Problems Using an Integral Formula”, Volume 101, Number 4, 2000 , Pages 47-52.
[9] P.Isaksson , R. Hagglund ,“Strain energy distribution in a crack-tip region in random fiber networks”, International Journal of Fracture , Volume 156, Number 1, 2009 , Pages 1-9.
[10] M. Lorentzon, K. Eriksson , “A path independent integral for the crack extension force of the circular arc crack”, Engineering Fracture Mechanics , Volume 66, Issue 5, July 2000 , Pages 423-439.
[11] Y.Z. Chen , X.Y. Lin , Z.X. Wang , “Evaluation of the stress intensity factors and the T-stress in periodic crack problem”, International Journal of Fracture , Volume 156, Number 2, 2009 , Pages 203-216.
[12] Xin Wang , “Two-parameter characterization of elastic–plastic crack front fields: Surface cracked plates under tensile loading”, Engineering Fracture Mechanics , Volume 76, Issue 7, May 2009 ,Pages 827-982.
[13] X.L. Fu, G.F. Wang, X.Q. Feng , “Surface effects on mode-I crack tip fields: A numerical study”, Engineering Fracture Mechanics , Volume 77 Issue 5 , May 2010 , Pages 1031-1202.
[14] P.V. Jogdand, K.S.R.K. Murthy, “A finite element based interior collocation method for the computation of stress intensity factors and T-stresses”, Engineering Fracture Mechanics Volume 77 Issue 5 , May 2010 , Pages 1031-1202.
[15] Jui-Hung Chang and Deh-Jun Peng, (2004).
[16] 葉俊彬,「應用Jk積分於均質與非均質材料在裂縫延伸時之能量釋放計算」,碩士論文,國立中央大學土木工程研究所,中壢(1996)。
[17] 陳哲彬,「複合材料垂直於介面上裂縫之Jk積分計算」,碩士論文,國立中央大學土木工程研究所,中壢(1997)。
[18] 鄔德傳,「三維裂縫之Jk積分與應力強度因子之數值計算」,博士論文,國立中央大學土木工程研究所,中壢(2005)。
[19] 康宇權,「混合載重下的三維多裂縫問題之M-積分」,碩士論文,國立中央大學土木工程研究所,中壢(2010)。
[20] 鐘靈光,「三維多裂縫問題之M-積分」,碩士論文,國立中央大學土木工程研究所,中壢(2011)。
指導教授 張瑞宏(Chang, J.H.) 審核日期 2012-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明