參考文獻 |
【1】 Doebling, S.W, Farrar, C.R., and Prime, M.B., ”A summary review of vibration-based damage identification methods”,The Shock and Vibration Digest, Vol. 30, pp. 91-105, 1998.
【2】 D Rytter, A., “Vibration based inspection of civil engineering structures”, PhD dissertation Department of Building Technology and Structural Engineering, Aalborg University, Aalborg, Denmark, 1993.
【3】 Farrar, C. R. and Jauregui, D. A., 1998, “Comparative study of damage identification algorithms applied to a bridge: I. Experiment,” Smart Materials and Structures, 7(5), pp. 704-719.
【4】 Farrar, C. R. and Jauregui, D. A., 1998, “Comparative study of damage identification algorithms applied to a bridge: II. Numerical study,” Smart Materials and Structures, 7(5), pp.720-731.
【5】 Ghobarah, A., Abou-Elfath, H. and Biddah, A., 1999, “Response-based damage assessment of structures,” Earthquake Engineering and Structural Dynamics, 28, pp. 79-104.
【6】 Y. Lei, A. S. Kiremidjian, K. K. Nair, J. P. Lynch and K. H. Law, 2003, “Statistical Damage Detection Using Time Series Analysis on a Structural Health Monitoring Benchmark Problem,” Proceedings of the 9th International Conference on Applications of Statistics and Probability in Civil Engineering, San Francisco, CA, USA, July, pp. 6-9.
【7】 Cooley, J. W. and Tukey, J. W., 1965, “An algorithm for the machine calculation of complex Fourier series, ” Mathematics of Computation, 19, pp. 297–301.
【8】 胡昌華,等「基於MATLAB 的系統分析與設計—小波分析」,西安電子科技大學出版社,中國大陸, 1999.
【9】 Cohen L., 1995, “Time–frequency analysis. 1st ed.,” NJ: Prentice-Hall.
【10】 Newland D. E. 1993, “An introduction to Random Vibrations, Spectral and Wavelet Analysis,” John Wiley & Sons, Inc., New York.
【11】 Yam, L. H., Yan, Y. J. and Jiang, J. S., 2003, “Vibration-based damage detection for composite structures using wavelet transform and neural network identification,” Composite Structures, 60, pp. 403-412.
【12】 Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu H. H, 1998, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Mathematical, Physical and Engineering Sciences, 454(1971), pp. 903-995.
【13】 Huang, N. E., Shen, Z., and Long, S. R., 1999, “A new view of nonlinear water waves: The Hilbert spectrum,” Annual. Review of Fluid Mechanics, 31, pp. 417–457.
【14】 Yang, J. N., and Lei, Y., 2000a, “System identification of linear structures using Hilbert transform and empirical mode decomposition, ” Proc., 18th Int. Modal Analysis Conf.: A Conf. on Structural Dynamics, Society for Experimental Mech., Inc., Bethel, Conn., 1, pp. 213–219.
【15】 Anshuman Kunwar1, Ratneshwar Jha, Matthew Whelan and Kerop Janoyan3, 2011, “Damage detection in an experimental bridge model using Hilbert–Huang transform of transient vibrations,” STRUCTURAL CONTROL AND HEALTH MONITORING.
【16】 邱東茳,「應用HHT頻譜於鋼結構房屋建築地震損傷之研究」,博士論文,國立中央大學土木工程研究所博士論文,民國100年。
【17】 Wu Z. and Huang N. E., 2004, “Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method,” Centre for Ocean-Land-Atmosphere Studies, Tech. Rep., No.173.
【18】 Su S. C., Huang N. E., and Wen K. L., 2008, “A new spectral representation of strong motion earthquake data: Hilbert spectral analysis of Taipower building station, 1994~2006,” Proc., 5th Int. Conf. on Urban Earthquake Engineering, Tokyo, Japan.
【19】 黃志偉,2009,「應用改良式HHT與模糊迴歸法於橋梁結構安全檢測」,私立逢甲大學土木暨水利工程研究所博士論文,台中市。
【20】 劉德俞,「應用希爾伯特黃轉換方法改進結構 系統識別方法於橋梁振動訊號之研究」,博士論文,國立中央大學土木工程研究所博士論文,民國100年。
【21】 Haar, Alfred, 1910, “Zur Theorie der orthogonalen Funktionensysteme (German),” Mathematische Annalen 69(3), pp.331–371.
【22】 Huang N.E," The Empirical Mode Decomposition and The Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis ", NASA.(manuscript), 1996.
【23】 Copson, E. T., 1967, “Asymptotic Expansions,” Cambridge University Press.
【24】 Pandey, J. N., 1996, “The Hilbert transform of Schwartz distributions and applications,” New York : John Wiley.
【25】 Gabor, D., 1946, “Theory of communication,” Proc. IEE, 93, pp. 429-457.
【26】 Tichmarsh, E. C., 1948, “Introduction to the theory of Fourier Integrals,” Oxford University Press.
【27】 Newland, D. E., 1993, “An introduction to Random Vibrations, Spectral & Wavelet Analysis,” John Wiley & Sons, Inc., New York.
【28】 Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu H. H, 1998, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Mathematical, Physical and Engineering Sciences, 454(1971), pp. 903-995.
【29】 Dazin, P. G., 1992, “Nonlinear Systems,” Cambridge University Press, Cambridge.
【30】 Long, S. R., Huang, N. E., Lung, C. C., Wu, M. L., Lin, R. Q., Mollo-Christensen, E. and Yuan, Y., 1995, “The Hilbert Techniques : An alternate approach for non-steady time series analysis,” IEEE Geoscience Remote Sensing Soc. Lttr., 3, pp. 6-11.
【31】 Dazin, P. G., 1992, “Nonlinear Systems,” Cambridge University Press, Cambridge.
【32】 Wu Z. and Huang N. E., 2004, “Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method,” Centre for Ocean-Land-Atmosphere Studies, Tech. Rep., No.173.
【33】 Whitham, G. B., 1975, “Linear and Nonlinear waves,” John Wiley, New York, NY..
【34】 Chopra, A. K., 2001, “Earthquake Dynamics of Structures: Theory and Applications to Earthquake Engineering,” 2nd edn, Prentice Hall, New Jersey, pp. 83
【35】 Wen, Y.K., 1976, “Method for random vibration of hysteretic system,” Journal of Engineering Mechanics – ASCE, 102(2), pp. 249-63.National Research Institute for Earth Science Disaster Prevention-NIED
【36】 日本防災科學技術研究所。2012年,取自http://www.kyoshin.bosai.go.jp/
|