博碩士論文 983202031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.147.79.32
姓名 林育民(Yu-Min Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 橫向等向性岩石熱傳導係數量測
(Measurement of the thermal conductivity of transversely isotropic rock)
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 熱探針法是以等向性材料做為考量設計的,不能直接測量異向性材料,本研究嘗試將熱探針法推廣至量測橫向等向性材料。
參考前人的實驗配置,將橫向等向性岩石依照片理方向進行裁切,利用熱探針法進行熱傳導係數的量測,並使用非定常細線加熱法與暫態平面熱源法量測以驗證熱探針法量測橫向等向性岩石熱傳導係數之可行性。
實驗結果顯示,在熱探針適用性方面,以電壓12Volt跟熱傳導係數為3W/mK的導熱泥即足以提供實驗所需。在數據處理方面,使用改良加權移動平均可以有效的降低誤差及計算偏差的發生。於暫態平面熱源法、熱線法及熱探針法的量測結果大致相符,可看出以熱探針法量測橫向等向性岩石的熱傳導係數是可行的。
摘要(英) This paper presents the characteristics of thermal conductivity in transversely isotropic rocks by using thermal probe method, transient plane source method, and transient hot-wire method, respectively. Schists (8 samples) were tested in this paper. In thermal probe method tests, this paper used moving average algorithm to tackle the excessive noise in measuring thermal conductivity. To investigate the relation between thermal conductivity and P-wave velocity, this paper also addressed the ultrasonic measurement instrument to obtain different orientated P-wave velocities in transversely isotropic rocks, hence, the thermal conductivities can be verified with the data of P-wave velocity. The results show that the thermal conductivities obtained from thermal probe method, transient plane source method, and transient hot-wire method are fairly agree well with each others. This paper proposed the above mentioned three methods can be used in measuring thermal conductivity in transversely isotropic rocks.
關鍵字(中) ★ 非定長細線加熱法
★ P波波速
★ 暫態平面熱源法
★ 熱探針量測法
★ 熱傳導係數
★ 橫向等向性
關鍵字(英) ★ Transient Plane Source Method
★ Thermal Probe Method
★ Transversely Isotropic
★ Thermal Conductivity
★ Transient Hot-Wire Method
★ P-wave Velocity
論文目次 圖目錄 VI
表目錄 VIII
第1章 緒論 1
1.1 研究背景 1
1.2 研究目的 1
1.3 研究方法 1
1.4 論文架構 2
第2章 文獻回顧 3
2.1 岩石異向性 3
2.1.1 定義 3
2.1.2 成因 3
2.1.3 異向性岩石的力學行為 4
2.1.4 橫向等向性岩石的力學行為 6
2.2 岩石基本熱學理論性質 8
2.3 熱傳導係數之定義 9
2.4 量測熱傳導係數的方法 10
2.4.1 穩態熱傳導係數量測方法 10
2.4.2 暫態熱傳導係數量測方法 11
2.5 異向性岩石熱傳導係數 19
2.6 橫向等向性岩石熱傳導係數 21
2.7 數據雜訊處理 24
第3章 實驗規劃 27
3.1 試驗材料 27
3.2 試體準備 29
3.2.1 儀器 29
3.2.2 步驟 30
3.3 熱探針量測法 32
3.3.1 試驗儀器 32
3.3.2 試驗步驟 36
3.4 非定常細線加熱法量測(熱線法) 40
3.4.1 試驗儀器 40
3.4.2 試驗步驟 42
3.5 暫態平面熱源法量測 44
3.5.1 試驗儀器 44
3.5.2 試驗步驟 45
3.6 輸入電壓對岩石的熱傳導係數之影響 46
3.6.1 實驗方法 46
3.6.2 實驗步驟 46
3.7 導熱泥對岩石熱傳的影響 48
3.8 P波波速試驗 49
3.8.1 實驗儀器 49
3.8.2 試驗步驟 50
第4章 結果與討論 52
4.1 熱探針校正試驗 52
4.2 橫向等向性岩石熱傳導係數 54
4.3 輸入電壓對岩石的熱傳導係數之影響 64
4.4 導熱泥對岩石熱傳的影響 67
4.5 P波波速試驗 69
4.6 橫向等向性岩石與P波波速之關係 80
第5章 結論與建議 82
5.1 結論 82
5.2 建議 83
參考文獻 84
參考文獻 (1)土木学会岩盤力学委員会岩盤の熱環境に関する研究小委員会,熱環境下の地下岩盤施設の開発をめざして―熱物性と解析,土木学会,日本(2006)
(2)張家銘,「以熱探針法量測大地材料熱傳導係數之適用性」,碩士論文,國立中央大學土木工程學系,中壢(2006)
(3)蕭弘典,「橫向等向性岩石熱傳導係數量測及誤差分析」,碩士論文,國立中央大學土木工程學系,中壢(2008)。
(4)王騏瑋,「層狀材料波傳行為之研究」,碩士論文,國立中央大學土木工程學系,中壢(2009)。
(5)胡廷秉,「超音波儀器之組裝及異向性岩石之超音波特性」,碩士論文,國立交通大學土木工程學系,新竹(1995)。
(6)ASTM, “ASTM D5334-08 Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure,” Annual Book of ASTM Standards, Vol. 0408 (2008).
(7)ASTM, “ASTM C1113 / C1113M-09 Standard Test Method for Thermal Conductivity of Refractories by Hot Wire (Platinum Resistance Thermometer Technique),” Annual Book of ASTM Standards, Vol. 1501(2009).
(8)ASTM, “ASTM E1225-09 Standard Test Method for Thermal Conductivity of Solids by Means of the Guarded-Comparative-Longitudinal Heat Flow Technique,” Annual Book of ASTM Standards, Vol. 1402(2009).
(9)ASTM, “ASTM C177-10 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus,” Annual Book of ASTM Standards, Vol. 0406(2010).
(10)ASTM, “ASTM C518-10 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus,” Annual Book of ASTM Standards, Vol. 0406(2010).
(11)ASTM, “ASTM D5470-12 Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials,” Annual Book of ASTM Standards, Vol. 1002(2012).
(12)ISO 22007-2:2008, Plastics -- Determination of thermal conductivity and thermal diffusivity -- Part 2 Transient plane heat source (hot disc) method.
(13)Abousleiman, Y., and Ekbote, S., “Solutions for the Inclined Borehole in a Porothermoelastic Transversely Isotropic Medium,” Journal of Applied Mechanics, Vol. 72, No. 1, pp. 102-144 (2005).
(14)Bouguerra, A., Laurent, J.P., Goual, M.S., and Queneudec, M., “The measurement of the thermal conductivity of solid aggregates using the transient plane source technique,” Journal of Physics D: Applied Physics, Vol. 30, No. 20, pp. 2900-2904(1997).
(15)Gustafsson, S.E., Karawacki, E., and Khan, M.N., “Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids,” Journal of Physics D: Applied Physics, Vol. 12, No. 9, pp. 1411-1421(1979).
(16)Gustafsson, S.E., “Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials,” Review of Scientific Instruments, Vol. 62, No. 3, pp. 797-804(1991).
(17)Hakala, M., Kuula, H., and Hudson, J.A., “Estimating the transversely isotropic elastic intact rock properties for in situ stress measurement data reduction: A case study of the Olkiluoto mica gneiss, Finland,” International Journal of Rock Mechanics and Mining Sciences, Vol. 44, pp. 14-46 (2007).
(18)Hakansson, B., Andersson, P., and Backstrom, G., “Improved hot-wire procedure for thermophysical measurements under pressure,” Review of Scientific Instruments, Vol. 59, No. 10, pp. 2269-2275(1988).
(19)He, Y., “Rapid thermal conductivity measurement with a hot disk sensor,” Thermochimica Acta, Vol. 436, No. 1-2, pp. 122-129(2005).
(20)Ohmura, T., Tsuboi, M., and Tomimura, T., “Estimation of the Mean Thermal Conductivity of Anisotropic Materials,” International Journal of Thermophysics, Vol. 23, No. 3, pp. 843-853(2002).
(21)Popov, Y.A., Pribnow, D.F.C., Sass, J.H., Williams, C.F., and Burkhardt H., “Characterization of rock thermal conductivity by high resolution optical scanning,” Geothermics, Vol. 28, pp. 253-276(1999).
(22)Singh, D.N., and Devid, K., “Generalized relationships for estimating soil thermal resistivity,” Experimental Thermal and Fluid Science, Vol. 22, No. 3, pp. 133-143(2000).
(23)Grubbe, K., Haenel, R., and Zoth, G., “Determination of the vertical component of thermal conductivity by line source methods,” Zeitblatt fur Geologie und Palaontologie, Teil I H (1/2), pp. 49-56(1983).
指導教授 田永銘(Yong-Ming Tien) 審核日期 2012-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明