博碩士論文 993204003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:54.221.159.188
姓名 蕭慕柔(Mu-Jou Hsiao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 電解剝落法之石墨表面性質探討
(Surface Properties of Graphiteby Electrolytic Exfoliation)
相關論文
★ 反離子的凝聚作用和釋放於界劑溶液中添加鹽類的影響之研究★ 以離子型界劑溶解微脂粒之研究
★ 奈米添加物對微乳液滴靜電特性的影響–蒙地卡羅模擬法★ W/O型微乳液液滴之電荷分佈量測
★ 溫度和PEG-脂質對磷脂醯膽鹼與離子型界面活性劑間作用的影響之研究★ 明膠的溶膠-凝膠相變化與微乳液-有機凝膠相變化
★ 膽固醇與膽鹽對微脂粒穩定度的影響★ 電解質溶液的表面張力-蒙地卡羅模擬法
★ 稀薄聚電解質溶液中的反離子凝聚現象★ 溫度不敏感性之電動力學行為於毛細管區域電泳
★ 以熱力學性質定義帶電粒子的電荷重正化現象★ 聚乙二醇與界面活性劑的作用
★ 聚電解質溶液中的反離子凝聚現象★ 聚電解質在中性高分子溶液中的泳動行為
★ 在聚電解質溶液中的有效電荷★ 以分散粒子動力學法模擬雙性團聯共聚物微胞之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文首先將探討以電解法製備石墨烯之機制,一方面將研究石墨電極表面性質,包括:物理粗糙度、潤濕現象、導電性及化學組成,進而發現陽極石墨表面在電解過程中會與氧氣反應形成一層氧化石墨,故我們推斷所剝落的粒子應為氧化石墨,並且我們可進一步改變電解時間及輸出電流以控制石墨表面的氧化程度;另一方面將針對電解所剝落的石墨粒子進行分析,包括:遮蔽效應、粒徑分析、表面電位、UV及TGA,發現電解剝落的氧化石墨相較於一般以Hummer method製備的氧化石墨其氧化程度較低,並且我們可進一步改變電解液的pH值以控制奈米石墨粒子表面的氧化程度。
  本論文的第二部分將探討超疏水石墨表面的潤濕行為,我們利用簡易的物理方式製備了超疏水石墨表面,首先以膠帶剝離石墨表面,即製出高疏水狀態,再將此石墨片進行超音波震盪,即製出超疏水之石墨表面,我們認為其形成原因為表面粗糙度,在經膠帶的機械力剝離後,石墨表面產生了微米級的粗糙度,再經過超音波震盪後,於溶液中可明顯觀察到有微小粒子從石墨片剝落,而此粒子經過粒徑分析測得為奈米等級粒子,故推斷經震盪後與微米級結構上產生了奈米級的粗糙度,而另一方面,我們於超疏水石墨表面觀察到Ostwald ripening的現象,此現象於疏水表面則不會發生,故此亦可證實我們的推論;此外,由於疏水及超疏水的表面結構不同,對於水潤濕於粗糙孔隙的行為便有所差異,故展現了不同的遲滯行為;最後,我們亦觀察到此超疏水石墨表面對於水的黏滯力,會隨接觸時間而增強,直至2 min可達到最大而持平。
摘要(英) In this thesis, the mechanism of fabricated graphene by electrolytic exfoliation is investigated. The experiment is divided into three parts. In the first part, we discuss the surface properties of graphite electrode through physical roughness, wetting phenomena, surface conductivity, and chemical composition. The anodic graphite surface react with oxygen then form a graphite oxide layer during electrolytic exfoliation. Therefore, we infer that the particles which are exfoliated from the surface of anode are graphite oxide. Furthermore, we can control the contact angle of graphite surface by electrolysis.
In the second part, we analyze the surface properties of exfoliated graphite oxide particles through particle size, zeta potential, UV-Vis spectrophotometer, and Thermogravimetric analysis. In these results, we observed that the oxidation order of graphite oxide nanoparticles by Electrolytic exfoliation is lower than that by Hummer method. Furthermore, we can control oxidation order of graphite oxide nanoparticles by tuning the pH of electrolyte.
In the third part, we discuss the wetting behavior of graphite surface. A superhydrophobic graphite surface has been fabricated through two facile physical steps, peeling and ultrasonicating. Peeling yields micron-scale roughening, and thus a highly hydrophobic surface is obtained. Further ultrasonicating results in a superhydrophobic surface with nanostructure embedded in microstructure. The nanostructure leads to networklike pores on the superhydrophobic film and convective Ostwald ripening is observed. Owing to their distinct resistance to liquid imbibition, contact angle hysteresis on hydrophobic and superhydrophobic surfaces is fundamentally different. Moreover, the adhesive force on a superhydrophobic surface grows with the contact time, and such aging effect is absent on hydrophobic graphite surface.
關鍵字(中) ★ 電解剝落法
★ 石墨烯
★ 石墨
★ 潤濕現象
★ 超疏水
關鍵字(英) ★ electrolytic exfoliation
★ graphene
★ wetting phenomena
★ superhydrophobic
★ graphite
論文目次 第一章 緒論..............................................1
1-1 石墨.................................................1
1-2 石墨烯...............................................2
1-3 石墨烯製備...........................................3
1-4 氧化石墨及氧化石墨烯.................................4
1-5 電解法...............................................7
1-6 研究動機與目的......................................10
第二章 理論背景.........................................11
2-1 潤濕現象............................................11
2-2 潤濕現象的定義......................................14
2-2-1 楊氏方程式(Young’’s equation)......................14
2-2-2 溫佐方程式( Wenzel’’s equation )...................16
2-2-3 卡西方程式(Cassie’’s equation).....................18
2-3 遲滯現象............................................21
2-3-1 遲滯現象的原理....................................22
2-3-2 接觸角遲滯的定義..................................24
2-3-3 低遲滯之超疏水表面-蓮花效應.......................26
2-3-4 高遲滯之超疏水表面-玫瑰效應及蔥蒜效應.............29
2-4 潤濕現象的測量方式..................................32
2-4-1 微量針頭法( Needle-Syringe )......................32
2-4-2 蒸發法............................................33
2-4-3 Wilhelmy 平板法( Plate Method )...................35
2-4-4 傾斜法 ( Inclined plate ).........................36
第三章 實驗介紹.........................................38
3-1 實驗藥品及材料......................................38
3-2 實驗儀器............................................39
3-2-1 影像式接觸角量測儀(Software-Controlled Multi Dosing System-DSA10)...........................................40
3-3 實驗步驟............................................42
3-3-1 材料前處理........................................42
3-3-2 樣品配置..........................................43
3-3-3 乾粉製備及萃取....................................43
3-3-4 材料表面處理......................................44
第四章 結果與討論.......................................45
4-1 電解系統的石墨片電極之表面性質探討..................45
4-1-1 以潤濕現象觀點探討石墨電極之表面..................46
4-1-2 以導電性觀點探討石墨電極之表面....................47
4-1-3 以化學結構探討石墨電極之表面......................48
4-1-4 電解石墨片在不同條件下之潤濕行為控制..............50
4-2 電解剝落的石墨粒子之表面性質探討....................57
4-2-1 電解剝落的石墨粒子之分散行為......................57
4-2-2 以UV及TGA探討電解剝落的石墨粒子之表面性質.........57
4-2-3 電解剝落的石墨粒子在不同pH環境下之氧化行為 ........59
4-3 石墨片表面之不同潤濕行為探討........................65
4-3-1 不同粗糙度之石墨表面的水珠潤濕行為................65
4-3-2 以氣泡來探討不同粗糙度之石墨表面的潤濕行為 ........66
4-3-3 超疏水石墨表面的Convective Ostwald Ripening.......67
4-3-4 不同粗糙度之石墨表面的黏滯行為....................68
4-3-5 超疏水石墨表面的特殊遲滯現象......................69
第五章 結論.............................................75
第六章 參考文獻.........................................77
參考文獻 [1] K. S. Novoselov, A. K. Geim et al., “Electric field effect in atomically thin carbon films ” , Science, 306, 666 (2004).
[2] F. Schedin, A. K. Geim et al., “Detection of individual gas molecules adsorbed on graphene ” , Nature materials, 6, 652 (2007).
[3] C. Berger, Z. Song et al., “Electronic confinement and coherence in patterned epitaxial graphene ” , Science, 312, 1191 (2006).
[4] S. Park, R. S. Ruoff, “Chemical methods for the production of graphenes ” , Nature nanotechnology, 4, 217 (2009).
[5] B. C. Brodie, “Sur le poids atomique du graphite ” , Ann. Chim Phys, 59, 466 (1860).
[6] W. S. Hummers Jr., R. E. Offeman, “Preparation of graphitic oxide ” , Journal of the American Chemical Society, 80, 1339 (1958).
[7] Y. Xu, H. Bai et al., “Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets ” , Journal of the American Chemical Society, 130, 5856 (2008).
[8] 蘇清源, “石墨烯氧化物之特性與應用前景 ” ,物理雙月刊, 33期2卷 (2011)
[9] 黃嘉興, “舊材料的新見解-氧化石墨烯之界面活性 ” , 工業材料雜誌, 29,124 (2011)
[10] M. Lotya, Y. Hernandez et al., “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions ” , Journal of the American Chemical Society, 131, 3611 (2009).
[11] G. Wang, B. Wang et al., “Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation ” , Carbon, 47, 3242 (2009).
[12] C. Y. Su, A. Y. Lu et al., “High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation ” , ACS Nano, 5 (3), 2332 (2011).
[13] 葉銘智, “分子構型對濕透行為之影響研究 ” , 國立台灣大學化學工程學研究所博士論文 (2003)
[14] J. S. Rowlinson, B. Widom, “Molecular Theory of Capillarity ” , Oxford., 66, 816 (1982).
[15] R. N. Wenzel, “Resistance of solid surfaces to wetting by water ” , Industrial & Engineering Chemistry, 28, 988 (1936).
[16] A. B. D. Cassie, S. Baxter, “Wettability of porous surfaces ” , Trans. Faraday Soc. , 40, 546 (1944).
[17] J.F.Joanny and P.G. de Gennes, “A model for contact angle hysteresis ” , Journal of Chemical Physics , 81,552(1984)
[18] S. J. Hong, F. M. Chang et al., “Anomalous Contact Angle Hysteresis of a Captive Bubble: Advancing Contact Line Pinning ” , Langmuir, 27(11), 6890(2011).
[19] R. E. Johnson, R. H. Dettre et al., “Contact angle hysteresis. Contact angle, wettability, and adhesion ” , Advances in Chemistry, 43, 112 (1964).
[20] P. G. De Gennes, D. Quéré et al., “Capillarity and wetting phenomena: drops, bubbles, pearls, waves ” , Springer Verlag, (2004).
[21] R. Fürstner, W. Barthlott et al., “Wetting and self-cleaning properties of artificial superhydrophobic surfaces ” , Langmuir, 21, 956 (2005).
[22] L. Feng, Y Zhang et al. , “Petal effect: a superhydrophobic state with high adhesive force ” , Langmuir, 24, 4114 (2008).
[23] F. M. Chang, S. J. Hong et al., “High contact angle hysteresis of superhydrophobic surfaces: Hydrophobic defects ” , Applied physics letters, 95, 064102 (2009).
[24] E. Rame, “The interpretation of dynamic contact angles measured by the Wilhelmy plate method ” , Journal of colloid and interface science , 185, 245 (1997).
[25] D. Li, M. B. Müller et al., “Processable aqueous dispersions of graphene nanosheets ” , Nature nanotechnology , 3, 101 (2008).
指導教授 曹恒光(Heng-Kwong Tsao) 審核日期 2012-6-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明