博碩士論文 993204040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:52.14.240.57
姓名 江佳蓉(Chia-Jung Chiang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 核殼結構奈米貴金屬/二氧化鈦之合成及其在光催化反應之應用
(M@TiO2 (M= Pd, Au, Ag) catalysts with core/shell structure and application on photocatalytic destruction of dye.)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究之目的在於發展高效率催化活性之核殼結構光觸媒,並將其應用於有機汙染物之分解。利用摻雜貴金屬改質二氧化鈦表面以提高光催化效率,由於金屬在表面形成電子活性點以促進界面電荷轉移。此種觸媒結構雖然活性好,但容易造成暴露在外的金屬與其他表面介質產生作用,使金屬容易溶解或腐蝕,導致觸媒活性衰退。核殼結構可以克服此缺點,將貴金屬置於內核,而二氧化鈦當作殼層。本研究係利用膠體凝膠法合成貴金屬/二氧化鈦核殼結構光觸媒,並利用不同製備條件(貴金屬前驅物濃度與水熱時間)來達到控制貴金屬擔載量以及二氧化鈦的結晶性。觸媒鑑定方面,主要是以X光繞射儀、穿透式電子顯微鏡、紫外可見光漫反射光譜儀與X光電子能譜儀進行鑑定與分析。並以兩支8w波長為254 nm的紫外燈管與250 w的鹵素燈為光源進行亞甲基藍的光催化反應測試,光降解樣品取樣利用紫外可見光光譜儀分析濃度,進行光反應活性之鑑定。第一部分為合成不同的貴金屬(鈀、銀、金)作為內核,二氧化鈦為外殼,並探討結構,表面組成與活性之間的關係。由TEM圖中顯示其金屬核的顆粒大小約為3-12nm,殼層之二氧化鈦厚度約為6-20nm。在X光繞射分析顯示金屬核為鈀的觸媒其二氧化鈦具有較高的結晶性。光反應活性之鑑定以10 ppm亞甲基藍水溶液為光反應標準物,以兩支8 w 波長為254 nm 的紫外光燈管與250w的鹵素燈當作光源。結果顯示鈀/二氧化鈦在上述兩種光源中都具有較高的活性。其主要的因素為二氧化鈦的結晶性,晶型結構明顯的二氧化鈦,可以增加光子進入內核的量子效率。而在可見光的活性測定中,其主要的因素為較低的能隙與在可見光中具有較高的吸收。第二部分以貴金屬擔載量與水熱時間作為變因並探討與活性之間的關係, 光反應活性之鑑定以10 ppm亞甲基藍水溶液為光反應標準物以兩支8 w 波長為254 nm 的紫外光燈管當作光源。在Pd@TiO2 ,Ag@TiO2與Au@TiO2中最適化的金屬擔載量分別為0.5wt.%,0.5wt.% 及 1.0wt%。水熱時間以18小時最佳。此外光催化活性也與二氧化鈦結晶性成正相關。總結結果,在metal@TiO2核殼型光觸媒中,貴金屬核的大小並不是影響活性的主要因素,而是與二氧化鈦殼層的結晶性、貴金屬的種類、擔載量與氫氧基含量有關。
關鍵詞:二氧化鈦、核殼結構、光觸媒、奈米鈀、奈米銀、奈米金、膠體溶膠法、水熱法、亞甲基藍降解
摘要(英) The purpose of this study was to develop a catalyst with high efficiency photocatalytic activity and had core/shell structure. It could be applied to the degradation of organic pollutants under UV light illumination. The literature shows that doping noble metal on the surface of titanium dioxide can enhance the photocatalytic activity because noble metal can form active sites to promote the electronic charge transfer in the interface of metal and titanium dioxide. Although the activity of this kind of structure is high, the exposed metal is easy to dissolve or corrosive, leading to catalyst decay. Core/shell structure can be used to overcome this shortcoming, noble metals located in the core, while titanium dioxide is in the shell. In this study, M@TiO2 (M = Pd, Ag, Au) catalysts with core/shell structure were synthesized by sol-gel method with hydrothermal treatment with different preparation parameters. These catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (UV-vis DRS), and X-ray photoelectron spectroscopy (XPS). The photoreaction was carried out in a 10 ppm methylene blue solution with two 8w 254 nm UV light and 250W halogen lamp as the light source. The concentration of MB in the degradation samples were measured by UV-vis spectrometer (UV-vis). This thesis is divided into two parts, the first part is on the preparation of M@TiO2 (M = Pd, Ag, Au) with core/shell structure and its photocatalystic activity. The TEM micrographs results show that the particle size of metal cores was about 3-12nm, and the shell thickness of titanium dioxide was about 6-20nm. The XRD pattern results show that Pd@TiO2 has highest crystallinity. The photoreaction was carried out in a 10 ppm methylene blue solution with two 8w 254 nm UV light and 250W halogen lamp as the light source. Pd@TiO2 had the highest activity under UV light and halogen lamp illumination. Because Pd@TiO2 had higher crysallinity, lower band gap energy, and higher absorption at visible region. The second part is on discussion different preparation parameters: metals loading amount, and hytrothermal time, and found the relationship with the photocatalystic activity by methylene blue degradation under the UV light illumination. The optimal amounts of Pd, Ag, and Au loading were 0.5 wt. %, 0.5 wt. %, 1.0 wt. %.The optimal hytrothermal time was 18 hours. Furthermore, the sample for 18 hour had the highest activity due to the highest crystallinity. From these results, the photocatalytic activity of M@TiO2 (M = Pd, Ag, Au) catalyst mainly depended on the crystallinity of TiO2, the kind of metals, the amount of noble metal loading and the OH group contents.
Keywords: titanium dioxide, core/shell structure, photocatalyst, palladium, silver, gold, sol-gel method, hydrothermal method, methylene degradation.
關鍵字(中) ★ 水熱法
★ 奈米銀
★ 奈米金
★ 核殼結構
★ 奈米鈀
★ 光觸媒
★ 二氧化鈦
關鍵字(英) ★ hydrothermal method
★ gold
★ silver
★ palladium
★ titanium dioxide
★ photocatalyst
★ core/shell structure
論文目次 中文摘要 i
Abstract ii
Table of Contents iv
List of Tables viii
List of Figures x
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Properties of titanium dioxide 4
2.2 Modified titanium dioxide 7
2.2.1 Composite TiO2 8
2.2.2 Transition metal doping 10
2.2.3 Anion doping 13
2.2.4 Noble metal doping 13
2.2.5 Synthesis of core-shell structure 17
2.3 Titanium dioxide nanoparticle by liquid phase synthesis method 18
2.3.1 Sol-gel method 19
2.3.2 Hydrothermal method 21
2.3.3 Co-precipitation 21
2.3.4 Electrochemical method 22
2.3.5 Combustion method 22
2.3.6 Microemulsion method 22
2.4 Application of photocatalyst 23
2.5 Photoactivity test by Methylene blue destruction 26
Chapter 3. Experimental 31
3.1 Materials 31
3.2 Preparation of Pd@TiO2 nanoparticles 31
3.2.1 Different Pd loading amount 32
3.2.2 Different hydrothermal treatment 32
3.3 Preparation of Ag@TiO2 and Au@TiO2 nanoparticles 33
3.3.1 Ag@TiO2 nanoparticle 33
3.3.2 Au@TiO2 nanoparticles 33
3.4 Characterization 35
3.4.1 XRD 35
3.4.2 TEM 36
3.4.3 XPS 36
3.4.4 UV-Vis 36
3.4.5 UV-vis DRS 37
3.5 Photoactivity test by methylene blue degradation 37
3.5.1 Apparatus of liquid phase reaction 37
3.5.2 Concentration calculation 38
Chapter 4. Photocatalytic Destruction of Methylene Blue : Effect of different metal cores 40
4.1 Introduction 40
4.2 Effect of different metals of the core 42
4.2.1 XRD 43
4.2.2 TEM 45
4.2.3 UV-vis DRS 47
4.2.4 XPS 49
4.2.5 Photoactivity test by methylene blue destruction 54
4.3 Summary 58
Chapter 5. Photocatalytic Destruction of Methylene Blue : Effect of Metal Loading Amounts and Hydrothermal Treatment 60
5.1 Introduction 60
5.2 Effect of various Au loading amount 62
5.2.1 XRD 62
5.2.2 TEM 64
5.2.3 XPS 66
5.2.4 Photoactivity test by methylene blue destruction 71
5.3 Effect of various Ag loading amount 73
5.3.1 XRD 73
5.3.2 TEM 76
5.3.3 XPS 78
5.3.4 Photoactivity test by methylene blue destruction 83
5.4 Effect of various Pd loading amount 85
5.4.1 XRD 85
5.4.2 TEM 88
5.4.3 XPS 90
5.4.4 Photoactivity test by methylene blue destruction 94
5.5 Effect of Hydrothermal treatment 96
5.5.1 XRD 96
5.5.2 TEM 99
5.5.3 XPS 101
5.5.4 Photoactivity test by methylene blue destruction 105
5.6 Summary 107
Chapter 6. Conclusion 109
Reference 111
參考文獻 Angkaewa, S. and Limsuwana, P., “Preparation of silver-titanium dioxide core-shell (Ag@TiO2) nanoparticles: Effect of Ti-Ag mole ratio”, Procedia Engineering 32, (2012), 649 – 655.
Abdulla-Al-Mamun, M.; Kusumoto, Y.; Zannat, T. and Islam, M., “Synergistic cell-killing by photocatalytic and plasmonic photothermal effects of Ag@TiO2 core–shell composite nanoclusters against human epithelial carcinoma (HeLa) cells”, Appl. Catal. A: G. (2011).
Andersson, M.; Osterlund, L.; Ljungstrom, S. and Palmqvist, A., “Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol”, J. Phys. Chem. B (2002), 106, 10674-10679.
Arabatzis, I. M.; Stergiopoulos, T.; Bernard, M. C.; Labou, D.; Neophytides, S. G. and Falaras, P.,” Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange”, Appl. Catal. B (2003), 42, 187-201.
Aruna, S. T.; Tirosh, S. and Zaban, A., “Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers”, J. Mater. Chem. (2000), 10, 2388-2391.
Balek, V.; Li, D.; Subrt, J.; Vecernikova, E.; Hishita, S., Mitsuhashi, T. and Haneda, H., “Characterization of nitrogen and fluorine co-doped titania photocatalyst : Effect of temperature on microstructure and surface activity properties”, J. Phys. Chem. Solid (2007), 68, 5-6, 770-774.
Babapour, A.; Akhavan, O.; Azimirad, R. and Moshfegh, A. Z., “Physical characteristics of heat-treated nano-silvers dispersed in sol-gel silica matrix”, Nanotechnology (2006), 17, 763-771.
Carp, O.; Huisman, C. L. and Reller, A.,”Photoinduced reactivity of titanium dioxide”, Progess in Solid State Chemistry (2004), 32, 33-177.
Chang, S. M.; Lo, P. H.; Chang, C. T.,”Photocatalytic behavior of TOPO-capped TiO2 nanocrystals for degradation of endocrine disrupting chemicals”, Applied Catalysis B: Environmental (2009), 91, 619-627.
Chen, Q.; Tang, C. and Zheng, G., “First-principles study of TiO2 anatase (101) surfaces doped with N”, Physica B (2009), 404, 1074-1078.
Cheng, B.; Le, Y. and Yu, J., ”Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires”, Journal of Hazardous Materials (2010).
Chhabra, V.; Pillai, V.; Mishra, B. K.; Morrone, A., Shah, D. O.,” Synthesis, Characterization, and Properties of Microemulsion-Mediated Nanophase TiO2 Particles”, Langmuir (1995), 11, 3307-3311.
Choi, H.; Al-Abed, S. R.; Dionysiou, D. D.; Stathatos, E. and Lianos, P., “TiO2-Based Advanced Oxidation Nanotechnologies for Water Purificationand Reuse”, Sustainability Science and Engineering (2010), 2.
Choi, W. Y.; Termin, A. and Hoffmann, M. R., “Effects of metal-ion dopants on the photocatalytic reactivity of quantum-sized TiO2 particles”, Angew. Chem. Int. Ed. (1994), 98, 13669-13679.
Chuang, H. Y. and Chen, D. H., “Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles”, Nanotechnology (2009), 20, 105704-105714.
Colmenares, J. C.; Aramendia, M. A.; Marinas, A.; Marinas, J. M. and Urbano, F. J., “Synthesis, characterization and photocatalytic activityof different metal-doped titania systems”, Applied Catalysis A: General (2006), 306, 120-127.
Diebold, U., ”The Surface Science of Titanium Dioxide”, Surface science reports, 48, (2003), 53-229.
Dobosz, A. and Sobczynski, A., “The influence of silver additives on titania photoactivity in the photooxidation of phenol”, Water Res. (2003), 37, 1489-1496.
Du, P, Bueno-Lopez, A, Verbaas, M, Almeida,A.R, Makkee, M, Moulijn, J.A, Mul, G, “The effect of surface OH-population on the photocatalytic activity of rare earth-doped P25-TiO2 in methylene blue degradation”, Journal of Catalysis , 260, (2008), 75–80.
Eshaghi, A.; Pakshir, M. and Mozaffarinia, R.,” Photoinduced properties of nanocrystalline TiO2 sol–gel derived thin films”, Bull. Mater. Sci. (2010), 33, 4, 365-369.
Fan, X.; Chen, X.; Zhu, S. Li, Z.; Yu, T. ; Ye, J. and Zou, Z., “The structural, physical and photocatalytic properties of the mesoporous Cr-doped TiO2”, J. Mol. Catal. A: Chem. (2008), 284, 155-160.
Frank, S. N. and Bard, A. J., “Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders”, J. Phys. Chem. (1977), 81, 1484-1488
Fujishima, A. and Honda, K., “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature (1972), 238, 37-38.
Fujishima, A., Hashimoto, K. and Watanabe, T., “TiO2 Photocatalysis Fundamentals and Applications, BKC Inc., Japan, 1999.
Fujishima, A.; Rao, T. N. and Tryk, D. A., “Titanium dioxide photocatalysis”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews (2000), 1, 1–21.
Gaya U. I. and Abdullah A. H.,” Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews (2008), 9, 1–12.
Giannakopoulou, T.; Todorova, N.; Trapalis, C and Vaimakis, T., “Effect of fluorine doping and SiO2 under-layer on the optical properties of TiO2 thin films”, Mater. Lett. (2007), 61, 23-24, 4474-4477.
Giraudon, J-M., Elhachimi, A., Wyrwalski,F., Siffert, S., Abouka ̈ıs, A., Lamonier, J-F., Leclercq, G., “Studies of the activation process over Pd perovskite-type oxides used for catalytic oxidation of toluene”, Applied Catalysis B: Environmental 75, (2007), 157–166.
Gniewek, A., Trzeciak, A. M., Ziołkowski, J. J., Ke ̨pin ́ski, L., Wrzyszcz, J., Tylus, W., “Pd-PVP colloid as catalyst for Heck and carbonylation reactions: TEM and XPS studies”, Journal of Catalysis 229, (2005) , 332–343.
Gole, J. L.; Stout, J. D.; Burda, C.; Lou, Y. and Chen, X., “Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale”, J. Phys. Chem. B (2004), 108, 4, 1230-1240.
Hada, R.; Amritphale, A.; Amritphale, S. S. and Dixit, S.;” A Novel Mixed Reverse Microemulsion Route for the Synthesis of Nanosized Titania Particles”, The Open Mineral Processing Journal (2010), 3 , 68-72.
Harada, Y.; Ogawa, K.; Irie, Y.; Endo, H.; Feriljr, L. B.; Uemura, T. and Tachibana, K., “Ultrasound activation of TiO2 in melanoma tumors”, Journal of Controlled Release (2011), 149, 190-195.
Herrmann, J. M.; Tahiri, H.; Ait-Ichou, Y.; Lassaletta, G.; Gonzaez-Elipe, A. R. and Fernandez, A., “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz”, Appl. Catal. B-Environ (1997), 13, 219-228.
Hirakawa, Tsutomu and Kamat, Prashant V, “Charge Separation and Catalytic Activity of Ag@TiO2 Core-Shell Composite Clusters under UV-Irradiation”, J. AM. CHEM. SOC. (2005), 127, 3928-3934
Hirakawa, Tsutomu and Kamat, Prashant V, “Photoinduced Electron Storage and Surface Plasmon Modulation in Ag@TiO2 Clusters”, Langmuir (2004), 20, 14.
Hiroyuki, O.; Fred, H.; Chien, M. W.,” Synthesis of Silver and Copper Nanoparticles in a Water-in-Supercritical-Carbon Dioxide Microemulsion”, Chem. Mater. (2001), 13, 4130-4135.
Hoffmann, M. R.; Martin, S. T.; Choi, W. and Bahnemann, D. W., “Environmental Applications of Semiconductor Photocatalysis”, Chem. Rev. (1995), 95, 69-96.
Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C. and Herrmann, J. M., “Photocatalytic degradation pathyway of methylene blue in water”, Appl. Catal., B-Environ. (2001), 31, 145-157.
Hou,, X., Ma, J., D., , Wang, X., Shen, Y., Yu, C., “Influence of V+ implantation on structural, chemical, optical and nanomechanical properties of TiO2 films”, Vaccum available online, (2012).
Huang, W., Zuo, Z., Han, P., Li, Z., Zhao, T., “XPS and XRD investigation of Co/Pd/TiO2 catalysts by different preparation methods.”, Journal of Electron Spectrosopy and Related Phenomena, 173, (2009), 88-95.
Huang, D.; Liao, S.; Liu, J. M.; Dang, Z. and Petrik, L., “Preparation of visible-light responsive N-F-codoped TiO2 photocatalyst by a sol-gel-solvothermal method”, J. Photochem. Photobiol. A (2006), 184, 3, 282-288.
Hwang, J. S.; Yang, Z. P.; Dai, S. B.; Tyan, S. L.; Kou, M. T. and Lin, C. L., “Diffusion Analysis of Gelatin Solutions by Photocorrelation Spectroscopy”, Chinese Journal of Physics (1998), 36, 5.
Jamalluddin, N. A. and Abdullah, A. Z., “Reactive dye degradation by combined Fe(III)/TiO2 catalyst and ultrasonic irradiation: Effect of Fe(III) loading and calcination temperature”, Ultrasonics Sonochemistry (2011), 18, 669–678
Jia, H.; Xu, H.; Hu, Y.; Tang, Y. and Zhang, L., “TiO2@CdS core–shell nanorods films: Fabrication and dramatically enhanced photoelectrochemical properties”, Electrochemistry Communications (2007), 9, 354-360.
Linsebigler, A. L., Lu, G., Yates J. T. and Jr., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms and Selected Results”, Chem. Rev. (1995), 95, 735-758.
Li, Y., Ma, M., Chen, W., Li, L., Zen, M., “Preparation of Ag-doped TiO2 nanoparticles by a miniemulsion method and their photoactivity in visible light illuminations”, Materials Chemistry and Physics 129, (2011), 501–505.
Lukman, A. I.; Gong, B.; Marjo, C. E.; Roessner, U.; Harris, A. T., “Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates”, Journal of Colloid and Interface Science (2011), 353, 433-444.
Kang, M.,” Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol”, J. Mol. Catal. A: Chem. (2003), 97, 173-183.
Kavan, L.;O’Regan, B.; Kay, A.; Gra˙˙tzel, M.,” Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3”, J. Electroanal. Chem. (1993), 346, 291-307.
Karvinen, S.; Hirva, P. and Pakkanen, T. A., “Ab initio quantum chemical studies of cluster models for doped anatase and rutile TiO2”, J. Mol. Struct-Theochem (2003), 626, 271-277.
Karunakaran, C.; Abiramasundari, G., Gomathisankar, P., Manikandan, G. and Anandi, V., “Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under
visible light”, Journal of Colloid and Interface Science (2010), 352, 68-74.
Kim, C. S.; Moon, B. K.; Park, J. H. and Son, S. M.,” Solvotherinal synthesis of nanocrystalline TiO2 in toluene with surfactant”, J. Cryst. Growth (2003), 254,
405-410.
Kim, M. J.; Kim, K. D.; Seo, H. O.; Luo, Y.; Dey, N. K. and Kim, Y. D., “Improvement in the photocatalytic activity of TiO2 by the partial oxidation ofthe C impurities”, Applied Surface Science (2011), 257, 2489-2493.
Kim, S. B. and Hong, S. C., “Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst”, Appl. Catal. B: Environ. (2002), 35, 305-315.
Kolen’ko, Y. V.; Burukhin, A. A.; Churagulov, B. R. and Oleynikov, N. N.,” Synthesis of nanocrystalline TiO2 powders from aqueous TiOSO4 solutions under hydrothermal conditions”, Mater. Lett. (2003), 57, 1124-1129.
Kraeutler, B. and Bard A. J.,” Heterogeneous photocatalytic preparation of supported catalysts—photodeposition of platinum on TiO2 powder and other substrates” J Am Chem Soc (1978), 100, 4317-4318
Kryukova, G. N.; Zenkovets, G. A.; Shutilov, A. A.; Wilde, M.; Gunther, K.; Fassler, D.; Richter, K.,” Structural peculiarities of TiO2 and Pt/TiO2 catalysts for the photocatalytic oxidation of aqueous solution of Acid Orange 7 Dye upon ultraviolet light”, Applied Catalysis B: Environmental (2007), 71, 169–176
Kuo, C.Y.; Wu, C.H.; Lin, H.Y., ”Photocatalytic degradation of bisphenol A in a visible light/TiO2 system”, Desalination (2010), 256, 37-42
Li, F. B. and Li, X. Z., “Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment”, Appl. Catal. A (2002), 228, 15-27.
Li, F. B. and Li, X. Z., ” The enhancement of photodegradation efficiency using Pt–TiO2 catalyst”, Chemosphere (2002), 48, 1103-1111.
Li, X. Z.; Li, F. B.; Yang, C. L. and Ge, W. K., “Photocatalytic activity of WOx-TiO2 under visible light irradiation”, J. Photochem. Photobiol A (2001), 141, 209-217.
Li, J., Zeng, H. C., “Size Tuning Functionalization, and Reactivation of Au in TiO2 Nanoreactors.”, Angew. Chem. Lnt. Ed., 44, (2005), 4342-4345.
Lin, Y. C. and Lin, C. H., “Catalytic and PhotocatalyticDegradation of Ozone via Utilization of ControllableNano-Ag Modified on TiO2”, Environmental Progress (2008), 27, 4, 496-502.
Ma, J.; Xiong, Z.; T., D. W.; Ng, W. J.; Zhao, X.S., ” Enhanced Inactivation of Bacteria with Silver-Modified Mesoporous TiO2 under Weak Ultraviolet Irradiation”,
Microporous and Mesoporous Materials (2011)
Ma, Y.; Fu, J. W.; Tao, X.; Li, X. and Chen, J. F., “Low temperature synthesis of iodine-doped TiO2 nanocrystallites with enhanced visible-induced photocatalytic activity”, Applied Surface Science (2011), 257, 5046-5051.
Mamun, A. A., Kusumoto, T., Zannat, S., Islam, S., ”Synergistic cell-killing by photocatalytic and plasmonic photothermal effects of Ag@TiO2 core–shell composite nanoclusters against human epithelial carcinoma (HeLa) cells”, Applied Catalysis A, General (2010).
Matsumoto, Y.; Ishikawa, Y.; Nishida, M. and Ii, S., “A New Electrochemical Method To Prepare Mesoporous Titanium(IV) Oxide Photocatalyst Fixed on alumite substrate ”, J. Phys. Chem. B (2000), 104, 4204-4209.
Moulder, J. F.; Stickle, W. F., Sobol, P. E.and Bomben, K. E.,”Handbook of X-ray Photoelectron spectroscopy”, Physical Electronics (1995).
Murakami, N.; Kamai, T. A.; Tsubota, T. and Ohno, T., “Novel hydrothermal preparation of pure brookite-type titanium(IV) oxide nanocrystal under strong acidic conditions”, Catalysis Communications (2009), 10, 963-966.
Nagaveni, K.; Sivalingam, G.; Hegde, M. S.; Madras, G.,” Solar photocatalytic degradation of dyes high activity of combustion synthesized nano TiO2”, Applied Catalysis B: Environmental (2004), 48, 83-93.
Natarajan, C.and Nogami, G.;” Cathodic Electrodeposition of Nanocrystalline Titanium Dioxide Thin Films”, J. Electronchem. Soc. (1996), 143, 1547-1550.
Pedraza, F. and Vasquez, A., “Obtention of TiO2 rutile at room temperature through direct Oxidation of TiCl3”, J. Phys. Chem. Solids (1999), 60, 445-448.
Peng, Y. H.; Huang, G. F. and Huang, W. Q., “Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films”, Advanced Powder Technology (2010).
Pillai, V.; Kumar, P., Huo, M. J.; Ayyub, P.; Shah, D. O., “Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors”, Adv. Colloid. Interface. Sci. (1995), 55, 241-269.
Ponznyak, S. K.; Kokorin, A. I. and Kulak, A. I.,“Effect of electron and hole acceptors on the photoelectrochemical behaviour of nanocrystalline microporous TiO2 electrodes”, J. Electroanal. Chem. (1998), 442, 99-105.
Rauf, M. A. and Ashraf, S. S., ” Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution”, Chem. Eng. J. (2009), 151, 10-18.
Rengaraj, S.and Li, X. Z.,” Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension”, Journal of Molecular Catalysis A: Chemical (2006), 243, 60–67
Rhoderick, E. H. and Williams, R. H., “Metal-Semiconductor Contacts”, 2nd ed”, Oxford University Press: New York, 1988, p11.
Sakthivela, S., Shankarb, M.V., Palanichamyb, M., Arabindoob, B., Bahnemanna, D.W., Murugesanb, V.,” Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst”, Water Research 38, (2004), 3001–3008,
Sakai, H.; Kanda, T.; Shibata, H.; Ohkubo, T. and Abe, M., “Preparation of Highly Dispersed Core/Shell-type Titania Nanocapsules Containing a Single Ag nanoparticle”, J. Am. Chem. Soc. (2006), 128, 4944-4945.
Senthilnathan, J. and Philip, L., “Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2”, Chemical Engineering Journal (2010), 161, 83-92.
Shi, J.M., Yan, X., Cui, H.J., Zong, X., Fu, M. L., Chen, S., Wang, L.,” Low-temperature synthesis of CdS/TiO2 composite photocatalysts: Influence of synthetic procedure on photocatalytic activity under visible light”, Volume 356, (2012), 53–60.
Siefert, R. L.; Pehkonen, S. O.; Erel, Y.; Hoffmann, M. R., “Iron photochemistry of aqueous suspensions of ambient aerosol with added organic acids”, Geochim. Cosmochim. Acta. (1994), 58, 3271-3279.
Sivaligam, G.; Nagaveni, K.; Hegde, M. S.; Madras, G., “Photocatalytic degradation of various dyes by combustionsynthesized nano anatase TiO2”, Applied Catalysis B: Environmental (2003), 45, 23-28.
Sokmen, M. and Ozkan, A., “Decolourising textile wastewater with modified titania: the effects of inorganic anions on the photocatalysis”, J. Phtotchem. Photobiol. A (2002), 147, 77-81.
Sonawane, R. S.; Kale, B. B. and Dongare, M. K.,” Preparation and photo-catalytic activity of Fe–TiO2 thinfilms prepared by sol–gel dip coating”, Mater. Chem. Phys.(2004), 85, 52-57.
Sonawane, R. S.; Hegde, S. G., Dongare, M. K., “Preparation of titanium(IV) oxide thin film photocatalystby sol–gel dip coating”, Mater. Chem. Phys. (2002), 77, 744-750.
Tian, H.; Ma, J.; Li, K. and Li, J., “Hydrothermal synthesis of S-doped TiO2 nanoparticles and theirphotocatalytic ability for degradation of methyl orange”, Ceramics International (2009), 35, 1289-1292.
Tom, R. T.; Nair, A. S.; Singh, N.; Aslam, M.; Nagendra, C. L.; Philip, R., Vijayamohanan, K. and Pradeep, T.,” Freely Dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, andAg@ZrO2 Core-Shell Nanoparticles: One-Step Synthesis, Characterization, Spectroscopy, and Optical Limiting Properties”, Langmuir (2003), 19, 3439-3445.
Tryba, B., “Increase of the Photocatalytic Activity of TiO2 by Carbon and Iron Modifications”, Int. J. Photoenergy (2008).
Vamathevan, V.; Tse, H.; Amal, R.; Low, G. and McEvoy, S., ” Effects of Fe3+ and Ag+ ions on the photocatalytic degradation of sucrose in water”, Catal. Today (2001), 68, 201-208.
Wang, C. Y.; Liu, C. Y.; Zheng, X.; Chen, J. and Shen, T.,” The surface chemistry of hybrid nanometer-sized particles I. Photochemical deposition of gold on ultrafine TiO2 particles ”, Colloids Surfaces A: Physicochem. And Eng. Aspects (1998), 131, 271-280.
Wang, G.,” Hydrothermal synthesis and photocatalytic activity of nanocrystalline TiO2 powders in ethanol–water mixed solutions”, J. Mol. Catal. A: Chem. (2007), 274, 185-191.
Wang, R. C.; Fan K. S. and Chang, J. S, “Removal of acid dye by ZnFe2O4/TiO2 -immobilized granular activated carbon under visible light irradiation in a recycle liquid–solid fluidized bed”, Journal of the Taiwan Institute of Chemical Engineers (2009), 40, 533–540.
Wang, W.; Zhang, J.; Chen, F.; He, D.; Anpo, M., “Preparation and photocatalytic properties of Fe3+-doped Ag@TiO2 core-shell nanoparticles”, Journal of Colloid and Interface Science (2008), 323, 182-186.
Wantala, K.; Laokiat, L.; Khemthong, P.; Grisdanurak, N and Fukaya, K., “Calcination temperature effect on solvothermal Fe–TiO2 and its performance under visible light irradiation”, Journal of the Taiwan Institute of Chemical Engineers (2010), 41, 612-616.
Wu, S. H. and Chen, D. H., “Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions”, Journal of Colloid and Interface Science (2004), 273, 165-169.
Wu, Z., Sheng, Z., Wang, H., Liu, Y.,” Relationship between Pd oxidation states on TiO2 and the photocatalytic oxidation behaviors of nitric oxide”, Chemosphere, 77, (2009), 264–268.
Xin, B.; Wang, P.; Ding, D.; Liu, J.; Ren, Z.; Fu, H.,” Effect of surface species on Cu-TiO2 photocatalytic activity”, Applied Surface Science (2008), 254, 2569–2574
Xu, N.; Shi, Z.; Fan, Y.; Dong, J.;Shi, J. and Hu, M. Z.-C., “Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions”, Ind. Eng. Chem. Res. (1999), 38, 373-379.
Yao, K. S.; Wang, D. Y.; Ho, W. Y.; Yan, J. J. and Tzeng, K. C.,”Photocatalytic bactericidal effect of TiO2 thin film on plant pathogens”, Surface & Coatings Technology (2007), 201, 6886–6888.
Yang, D. J.; Park, H.; Kim, H. G.; Cho, S. and Choi, W. Y.,” Fabrication of a patterned TiO2 nanotube arraysin anodic oxidation, J. Electroceram. (2009), 23, 159-163.
Yang, S. W. and Gao, L., “Fabrication and shape-evolution of nanostructured TiO2 via asol–solvothermal process based on benzene–water interfaces”, Mater. Chem. Phys. (2006), 99, 437.
Yildiz, A.; Lisesivdin, S. B.; Kasap, M.; Mardare, D., “Non-adiabatic small polaron hopping conduction in Nb-doped TiO2 thin film”, Physica B (2009), 404, 1423-1426.
Yin, S.; Fujishiro, Y.; Wu, J.; Aki, M. and Sato, T., “Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions”, J. Master. Proc. Tech. (2003), 137, 45-48.
You, X.; Chen, F.; Zhang, J. and Anpo, M., “A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide”, Catalysis Letters (2005), 102, 3-4.
Yu, J. G.; Zhao, X. J. and Zhao, Q. N.,“Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method”, Thin Solid Film (2000), 379, 7-14.
Yu, J.; Xiong, J.; Cheng, B. and Liu, S., “Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity.”, Applied Catalysis B: Environmental (2005), 60, 211-221.
Yu, J., Wang, G., Cheng, B., Zhou, M., “Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders”, Applied Catalysis B: Environmental, 69, (2007), 171–180.
Yu, J., Yu, H., Cheng, B., Zhou, M., Zhao, X., “Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment”, Journal of Molecular Catalysis A: Chemical, 253, (2006), 112–118.
Zielinska, A.; Kowalska, E.; Sobczak, J. W.; Lacka, I.; Gazda, M.; Ohtani, B.; Hupka, J. and Zaleska, A., “Silver-doped TiO2 prepared by microemulsion method Surface properties,bio- and photoactivity”, Separation and Purification Technology (2010) , 72, 309–318.
Zielinska-Jurek, A.; Kowalska, E.; Sobczak, J. W.; Lisowski, W.; Ohtani, B. and Zaleska, A., “Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au)modified-titania photocatalysts activated by visible light”, Applied Catalysis B: Environmental (2011), 101, 504-514.
Zhang, D.; Song, X.; Zhang, R.; Zhang M.; Liu, F.,” Preparation and Characterization of Ag@TiO2 Core-Shell Nanoparticles in Water-in-Oil Emulsions”, Eur. J. Inorg. Chem. (2005), 1643-1648.
Zhang, F.; Guan, N.; Li, Y.; Zhang, X.; Chen, J. and Zeng, H., ” Control of Morphology of Silver Clusters Coated on Titanium Dioxide during Photocatalysis”, Langmuir (2003), 19, 8230-8234.
Zhang, F.; Jin, R.; Chen, J.; Shao, C.; Gao, W.; Li, L. and Guan, N., “High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters”, Journal of Catalysis (2005), 233, 424-431.
Zhang, J.; Xu, Q.; Feng, Z.; Li, M.; Li, C., “Importance of the Relationship between Surface Phases and Photocatalytic Activity of TiO2”, Angew. Chem. Int. Ed. (2008), 47, 1766-1769.
Zhang, L.; Kanki, T.; Sano, N. and Toyoda, A.,” Development of TiO2 photocatalyst reaction for water purification”, Separation and Purification Technology (2003), 31, 105-110.
Zhang, R.and Gao, L.,” Preparation of nanosized titania by hydrolysis of alkoxide titanium in micelles”, Mater. Res. Bull (2002), 37, 1659-1666.
Zhang, T.; Oyama, T.; Aoshima, A.; Hidaka, H.; Zhao, J. and Serpone, N., “Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation”, J. Photochem. Photobiol. A (2001), 140, 163-172.
Zhang, Z.; Shao, C.; Zhang, L.; Li, X. and Liu, Y.,” Electrospun nanofibers of V-doped TiO2 with high photocatalytic activity”, Journal of Colloid and Interface Science (2010), 351, 57-62.
Zhao, X. F.; Meng, X. F.; Zhang, Z. H.; Liu, L. and Jia, D. Z., “Preparation and photocatalytic activity of Pd-doped TiO2 thin films”, J. Inorg. Mater. (2004), 19, 140-146.
Zhang, N., Liu, S., Fu, X., Xu, Y. J.,” Synthesis of M@TiO2 (M = Au, Pd, Pt) Core_Shell Nanocomposites with Tunable Photoreactivity”, J. Phys. Chem. C, 115, (2011), 9136–9145.
Zhitomirsky, I.,” Cathodic electrosynthesis of titanium and ruthenium oxides”, Mater. Lett. (1998), 33, 305-310.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2012-6-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明