博碩士論文 993204010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:3.21.244.151
姓名 李芃蓁(Peng-chen Lee)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用恆溫滴定微卡計與圓二色光譜儀探討鏈酶卵白素與核適體之鍵結機制
(Non-classical Thermodynamics, Binding Stoichiometry, and Structural Changes Associated with Streptavidin-Aptamer Binding)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用恆溫滴定微卡計(Isothermal Titration Calorimetry, ITC)與圓二色光譜儀(Circular Dichroism, CD)來探討鏈酶卵白素(Streptavidin, SA)與其核適體(aptamer)之間的作用行為。我們藉由調控SA與其核適體(St-1)結合之環境條件,包含在不同金屬離子種類、鹽濃度及溫度下,期望以ITC獲得熱力學資訊,並結合CD觀測二級結構之變化資訊,探討SA與其核適體(St-1)之間的辨識作用機制。
在熱力學的分析,SA與其核適體(St-1)結合反應的發生是由焓主導,表示此結合反應由靜電作用力主導。藉由鹽類的添加,希望能導致靜電遮蔽的效果,證明SA與St-1之結合反應確實為靜電作用力主導,但從ITC之結果發現,隨著鹽濃度的上升,SA與St-1的結合能力不僅未降低,而且SA與St-1結合之放熱量(焓)是增加的,此結果是與預期的結果相衝突的,因此吾人推測SA與St-1結合過程中,在不同鹽濃度下,應有伴隨著不同程度的SA之構型變化所導致的結果。所以利用CD去分析SA與St-1在結合過程中之二級結構的變化,從實驗結果是SA與St-1在結合過程中是有明顯伴隨著構型的改變,但是構型改變量卻不隨著鹽濃度的添加而有所改變。另外,從SA與St-1結合之熱容量變化(?Cp)之分析,顯示SA與St-1在結合過程中,其三級/四級結構變化量是隨著鹽濃度的添加而明顯增加,表示會造成SA與St-1的結合在不同鹽濃度下會有不同程度的整體構型變化,是由於環境中的水分子的排開程度扮演著很重要的關鍵。本研究還利用CD能觀測二級結構之特點,選擇在特定的波長下,測量不同濃度比之SA與St-1的二級結構變化程度,探討結構變化量與化學劑量比(stoichiometry, N)的關係,結果指出一個SA分子最多能結合兩個核適體分子,此結果與ITC之化學劑量比(N=2)相符。從以上的實驗結果,我們提出一個SA與St-1結合的模型,詳細地解釋兩者之間的辨識行為。更進一步地,藉由SA與St-1之結合機制的了解,本研究利用取代滴定法於ITC實驗,克服了ITC之偵測極限,並得到SA與biotin之結合常數。
摘要(英) Aptamers are valuable for the discovery and application of new principals and designs of nucleic acid-ligand interactions. This study investigated the thermodynamics and conformational changes associated with the binding between streptavidin (SA) and its DNA aptamer under various temperatures and salt concentrations. The binding was enthalpy-driven with a large entropy cost. The binding association constant (Ka) was independent of the salt concentrations; however, enthalpy increased in conjunction with the salt concentration. The spectroscopic studies indicated that each SA tetramer bound a maximum of 2 aptamer molecules. The binding was accompanied with substantial conformational changes, which were insensitive to the variation of salt concentrations. These non-classical results indicate the prominent involvement of the binding-site hydration water molecules in SA-aptamer binding. We propose a salt-bridge swap model to explain the salt-independent Kd values. To maximize binding affinity, the electrostatic interactions within the proteins and those within the aptamer-Na+ counter ions exchange their partners, resulting in the observed structural changes and the possible release of hydration water molecules. 
關鍵字(中) ★ 恆溫滴定微卡計
★ 核適體
★ 圓二色光譜儀
★ 鏈酶卵白素
關鍵字(英) ★ circular dichroism
★ aptamer
★ streptavidin
★ isothermal titration calorimetry
論文目次 目錄
中文摘要 i
Abstract iii
致 謝 iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
第二章 文獻回顧 3
2.1 核適體(aptamer) 3
2.1.1 核適體之介紹 3
2.1.2 Systematic Evolution of Ligands by Exponential Enrichments (SELEX) 5
2.1.3 核適體之應用 7
2.1.4 核適體與目標分子結合機制之研究 10
2.2 鏈酶卵白素(Streptavidin, SA) 17
2.2.1 鏈酶卵白素之介紹 17
2.2.2 鏈酶卵白素之結構 19
2.2.3 鏈酶卵白素和其配體生物素(Biotin)之應用 21
2.2.4 鏈酶卵白素和生物素結合機制之研究 23
2.2.5 鏈酶卵白素之核適體 27
2.3 恆溫滴定微卡計(Isothermal Titration Calorimetry, ITC) 31
2.3.1 恆溫滴定微卡計之介紹 31
2.3.2 恆溫滴定微卡計在生物系統之研究 34
2.3.3 利用取代滴定法改善ITC量測生物系統之極限 36
2.4 圓二色光譜儀(Circular Dichroism, CD) 38
2.4.1 圓二色光譜儀之介紹 38
2.4.2 圓二色光譜儀在生物系統之研究 40
第三章 實驗藥品與儀器設備 41
3.1 實驗藥品 41
3.2 實驗儀器 43
3.3 實驗方法 44
3.3.1 緩衝溶液及樣品溶液之配製 44
3.3.2 恆溫滴定微卡計實驗 47
3.3.3 圓二色光譜儀實驗 49
3.3.4 螢光實驗 50
第四章 結果與討論 51
4.1 鏈酶卵白素與其核適體之結合常數與熱力學之初步分析 51
4.2 鏈酶卵白素與其核適體結合行為之二級結構分析 57
4.2.1 鏈酶卵白素之核適體二級結構之探討 57
4.2.1.1 不同鹽類及濃度對鏈酶卵白素之核適體二級結構之影響 60
4.2.1.3 不同溫度對於鏈酶卵白素之核適體二級結構之影響 64
4.2.2 鏈酶卵白素二級結構之探討 65
4.2.2.1 鹽濃度對於鏈酶卵白素二級結構之影響 66
4.2.2.2 溫度對於鏈酶卵白素二級結構之影響 67
4.2.3 鏈酶卵白素與其核適體結合之二級結構變化 68
4.3 鏈酶卵白素與核適體結合之化學劑量比(stoichiometry)分析 74
4.4 鏈酶卵白素與其核適體結合之辨識機制探討 77
4.4.1 鹽類效應與一價金屬離子之效應 77
4.4.2 溫度效應與結合熱容量(?Cp)變化之分析 81
4.5 鏈酶卵白素與其核適體結合機制之模型之提出 88
4.6 利用取代滴定法測得鏈酶卵白素與biotin之結合常數 95
第五章 結論 98
第六章 參考文獻 100
參考文獻 [1] D.L. Robertson and G.F. Joyce, Selection in Vitro of an RNA Enzyme that Specifically Cleaves Single-stranded DNA, Nature, 344 (1990) 467-468.
[2] C. Tuerk and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, 249 (1990) 505-510.
[3] A.D. Ellington and J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands, Nature, 346 (1990) 818-822.
[4] L.C. Bock and L.C. Griffin, Selection of Single-Stranded-DNA Molecules that Bind and Inhibit Human Thrombin, Nature, 355 (1992) 564-566.
[5] C.H. Lin and D.J. Patel, Encapsulating an amino acid in a DNA fold, nature structural biology, 3 (1996) 1046-1050.
[6] P.H. Lin, S.L. Yen, M.S. Lin, Y. Chang, S.R. Louis, A. Higuchi and W.Y. Chen, Microcalorimetrics studies of the thermodynamics and binding mechanism between L-tyrosinamide and aptamer, The journal of physical chemistry. B, 112 (2008) 6665-6673.
[7] S.E. Osborne and A.D. Ellington, Nucleic acid selection and the challenge of combinatorial chemistry, chemical reviews, 97 (1997) 349-370.
[8] S.C.B. Gopinath and T.S. Misono, An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits haemagglutinin-mediated membrane fusion, Journal of General Virology, 87 (2006) 479-487.
[9] S. Sekiya and K. Noda, Characterization and application of a novel RNA aptamer against the mouse prion protein, Journal of Biochemistry, 139 (2006) 383-390.
[10] F. Nishikawa and K. Funaji, In vitro selection of RNA aptamers against the HCVNS3 helicase domain, Oligonucleotides, 14 (2004) 114-129.
[11] J. Ciesiolka and J. Gorski, Selection of an RNA domain that binds Zn2+, RNA publication of the RNA society, 1 (1995) 538-550.
[12] D. Nieuwlandt and M. Wecker, In vitro selection of RNA ligands to substance-P, Biochemistry, 34 (1995) 5651-5659.
[13] M. Khati and M. Schuman, Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2’’F-RNA aptamers, Journal of Virology, 77 (2003) 12692-12698.
[14] F. Pileur and M.L. Andreola, Selective inhibitory DNA aptamers of the human RNase H1, Nucleic acids research, 31 (2003) 5776-5788.
[15] T.S. Misono and P.K.R. Kumar, Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance, Analytical biochemistry, 342 (2005) 312-317.
[16] S.D. Mendonsa and M.T. Bowser, In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis, Journal of the American Chemical Society, 127 (2005) 9382-9383.
[17] S.D. Mendonsa and M.T. Bowser, In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis, Analytical chemistry, 76 (2004) 5387-5392.
[18] A. Drabovich and M. Berezovski, Selection of smart aptamers by equilibrium capillary electrophoresis of equilibrium mixtures(ECEEM), Journal of the American Chemical Society, 127 (2005) 11224-11225.
[19] M.V. Berezovski and M.U. Musheev, Non-SELEX: selection of aptamers without intermediate amplification of candidate oligonucleotides, Nature protocols, 1 (2006) 1359-1369.
[20] M. Blank and T. Weinschenk, Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels-Selective targeting of endothelial regulatory protein pigpen, Journal of Biological Chemistry, 276 (2001) 16464-16468.
[21] X.B. Yang and X. Li, Immunofluorescence assay and flow-cytometry selection of bead-bound aptamers, Nucleic acids research, 31 (2003).
[22] D.H. Bunka and P.G. Stockley, Aptamers come of age - at last, Nature reviews. Microbiology, 4 (2006) 588-596.
[23] J.C. Cox and A.D. Ellington, Automated selection of anti-protein aptamers, Bioorganic and Medicinal Chemistry, 9 (2001) 2525-2531.
[24] C. Bock and M. Coleman, Photoaptamer arrays applied to multiplexed proteomic analysis, Proteomics, 4 (2004) 609-618.
[25] D. Eulberg and K. Buchner, Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance Pantagonist, Nucleic acids research, 33 (2005).
[26] A.V. Kulbachinskiy, Methods for selection of aptamers to protein targets, Biochemistry. Biokhimiia, 72 (2007) 1505-1518.
[27] B.E. Eaton and W.A. Pieken, Ribonucleosides and RNA, Annual review of biochemistry, 64 (1995) 837-863.
[28] T.M.A. Gronewold, S. Glass, E. Quandt and M. Famulok, Monitoring complex formation in the blood-coagulation cascade using aptamer-coated SAW sensors, Biosens Bioelectron, 20 (2005) 2044-2052.
[29] C.A. Savran, S.M. Knudsen, A.D. Ellington and S.R. Manalis, Micromechanical detection of proteins using aptamer-based receptor molecules, Analytical chemistry, 76 (2004) 3194-3198.
[30] G.S. Bang, S. Cho and B.G. Kim, A novel electrochemical detection method for aptamer biosensors, Biosens Bioelectron, 21 (2005) 863-870.
[31] R. Nutiu and Y.F. Li, Structure-switching signaling aptamers, Journal of the American Chemical Society, 125 (2003) 4771-4778.
[32] C.J. Yang, S. Jockusch, M. Vicens, N.J. Turro and W.H. Tan, Light-switching excimer probes for rapid protein monitoring in complex biological fluids, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005) 17278-17283.
[33] C. Ravelet, C. Grosset and E. Peyrin, Liquid chromatography, electrochromatography and capillary electrophoresis applications of DNA and RNA aptamers, Journal of Chromatography A, 1117 (2006) 1-10.
[34] T.S. Romig, C. Bell and D.W. Drolet, Aptamer affinity chromatography: combinatorial chemistry applied to protein purification, J Chromatogr B, 731 (1999) 275-284.
[35] A.C. Connor and L.B. McGown, Aptamer stationary phase for protein capture in affinity capillary chromatography, Journal of Chromatography A, 1111 (2006) 115-119.
[36] Q. Deng, I. German, D. Buchanan and R.T. Kennedy, Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase, Analytical chemistry, 73 (2001) 5415-5421.
[37] T.U. Vo and L.B. McGown, Effects of G-quartet DNA stationary phase destabilization on fibrinogen peptide resolution in capillary electrochromatography, Electrophoresis, 27 (2006) 749-756.
[38] M. Michaud, E. Jourdan, A. Villet, A. Ravel, C. Grosset and E. Peyrin, A DNA aptamer as a new target-specific chiral selector for HPLC, Journal of the American Chemical Society, 125 (2003) 8672-8679.
[39] J. Ruta, C. Ravelet, C. Grosset, J. Fize, A. Ravel, A. Villet and E. Peyrin, Enantiomeric separation using an L-RNA aptamer as chiral additive in partial-filling capillary electrophoresis, Analytical chemistry, 78 (2006) 3032-3039.
[40] P.S. Pendergrast, H.N. Marsh, D. Grate, J.M. Healy and M. Stanton, Nucleic acid aptamers for target validation and therapeutic applications, Journal of biomolecular techniques : JBT, 16 (2005) 224-234.
[41] J.F. Lee, G.M. Stovall and A.D. Ellington, Aptamer therapeutics advance, Current opinion in chemical biology, 10 (2006) 282-289.
[42] J. Floege, T. Ostendorf, U. Janssen, M. Burg, H.H. Radeke, C. Vargeese, S.C. Gill, L.S. Green and N. Janjic, Novel approach to specific growth factor inhibition in vivo: antagonism of platelet-derived growth factor in glomerulonephritis by aptamers, The American journal of pathology, 154 (1999) 169-179.
[43] J.S. Nelson and L. Giver, Incorporation of a non-nucleotide bridge into hairpin oligonucleotides capable of high-affinity binding to the Rev protein of HIV-1, Biochemistry, 35 (1996) 5339-5344.
[44] M.A. Convery, S. Rowsell, N.J. Stonehouse, A.D. Ellington, I. Hirao, J.B. Murray, D.S. Peabody, S.E. Phillips and P.G. Stockley, Crystal structure of an RNA aptamer-protein complex at 2.8 A resolution, Nat Struct Biol, 5 (1998) 133-139.
[45] S. Rowsell, N.J. Stonehouse, M.A. Convery, C.J. Adams, A.D. Ellington, I. Hirao, D.S. Peabody, P.G. Stockley and S.E. Phillips, Crystal structures of a series of RNA aptamers complexed to the same protein target, Nat Struct Biol, 5 (1998) 970-975.
[46] T. Hermann and D.J. Patel, Biochemistry - Adaptive recognition by nucleic acid aptamers, Science, 287 (2000) 820-825.
[47] J. Noeske, J. Buck, B. Furtig, H.R. Nasiri, H. Schwalbe and J. Wohnert, Interplay of ’’induced fit’’ and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch, Nucleic acids research, 35 (2007) 572-583.
[48] P.H. Lin, R.H. Chen, C.H. Lee, Y. Chang, C.S. Chen and W.Y. Chen, Studies of the binding mechanism between aptamers and thrombin by circular dichroism, surface plasmon resonance and isothermal titration calorimetry, Colloids and surfaces. B, Biointerfaces, 88 (2011) 552-558.
[49] J.M. Carothers, S.C. Oestreich and J.W. Szostak, Aptamers selected for higher-affinity binding are not more specific for the target ligand, J Am Chem Soc, 128 (2006) 7929-7937.
[50] G.R. Bishop, J. Ren, B.C. Polander, B.D. Jeanfreau, J.O. Trent and J.B. Chaires, Energetic basis of molecular recognition in a DNA aptamer, Biophysical chemistry, 126 (2007) 165-175.
[51] F. M., Molecular recognition of amino acids by RNA-aptamers: an L-citrlline binding RNA motif and its evolution into an L-arginine binder, J. Am. Chem. Soc., 116 (1994) 1698-1706.
[52] Z. Huang and J.W. Szostak, Evolution of aptamers with a new specificity and new secondary structures from an ATP aptamer, RNA, 9 (2003) 1456-1463.
[53] C. Mannironi, C. Scerch, P. Fruscoloni and G.P. Tocchini-Valentini, Molecular recognition of amino acids by RNA aptamers: The evolution into an L-tyrosine binder of a dopamine-binding RNA motif, Rna-a Publication of the Rna Society, 6 (2000) 520-527.
[54] N.M. Sayer, M. Cubin, A. Rhie, M. Bullock, A. Tahiri-Alaoui and W. James, Structural determinants of conformationally selective, prion-binding aptamers, Journal of Biological Chemistry, 279 (2004) 13102-13109.
[55] A.K. Dey, C. Griffiths, S.M. Lea and W. James, Structural characterization of an anti-gp120 RNA aptamer that neutralizes R5 strains of HIV-1, Rna-a Publication of the Rna Society, 11 (2005) 873-884.
[56] M. Muller, J.E. Weigand, O. Weichenrieder and B. Suess, Thermodynamic characterization of an engineered tetracycline-binding riboswitch, Nucleic acids research, 34 (2006) 2607-2617.
[57] S.D. Gilbert, C.D. Stoddard, S.J. Wise and R.T. Batey, Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain (vol 359, pg 754, 2006), Journal of Molecular Biology, 363 (2006) 624-624.
[58] M.T. Record, Jr., C.F. Anderson and T.M. Lohman, Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity, Quarterly reviews of biophysics, 11 (1978) 103-178.
[59] K. Gallagher and K. Sharp, Electrostatic contributions to heat capacity changes of DNA-ligand binding, Biophysical journal, 75 (1998) 769-776.
[60] M.A. Neves, O. Reinstein and P.E. Johnson, Defining a stem length-dependent binding mechanism for the cocaine-binding aptamer. A combined NMR and calorimetry study, Biochemistry, 49 (2010) 8478-8487.
[61] L.C.F.J. Wolf, The Properties of Streptavidin, a Biotin-Binding Protein Produced by Streptomycetes, Archives of biochemistry and biophysics, 106 (1964) 1-5.
[62] M.L.J.a.G.P. Kurzban, noncooperativity of biotin binding to tetrameric streptavidin, Biochemistry, 34 (1995).
[63] N.M. Green, Avidin, 29 (1975) 85-133.
[64] A. Holmberg, A. Blomstergren, O. Nord, M. Lukacs, J. Lundeberg and M. Uhlen, The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures, Electrophoresis, 26 (2005) 501-510.
[65] E.A. Bayer, H. Ben-Hur, G. Gitlin and M. Wilchek, An improved method for the single-step purification of streptavidin, Journal of biochemical and biophysical methods, 13 (1986) 103-112.
[66] W.A. Hendrickson, A. Pahler, J.L. Smith, Y. Satow, E.A. Merritt and R.P. Phizackerley, Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation, Proceedings of the National Academy of Sciences of the United States of America, 86 (1989) 2190-2194.
[67] E.P. Diamandis and T.K. Christopoulos, The Biotin (Strept)Avidin System - Principles and Applications in Biotechnology, Clin Chem, 37 (1991) 625-636.
[68] S. Freitag, I. Le Trong, L.A. Klumb, V. Chu, A. Chilkoti, P.S. Stayton and R.E. Stenkamp, X-ray crystallographic studies of streptavidin mutants binding to biotin, Biomol Eng, 16 (1999) 13-19.
[69] S. Freitag, I. LeTrong, L. Klumb, P.S. Stayton and R.E. Stenkamp, Structural studies of the streptavidin binding loop, Protein Science, 6 (1997) 1157-1166.
[70] T. Sano, S. Vajda and C.R. Cantor, Genetic engineering of streptavidin, a versatile affinity tag, J Chromatogr B, 715 (1998) 85-91.
[71] P.S. Stayton, S. Freitag, L.A. Klumb, A. Chilkoti, V. Chu, J.E. Penzotti, R. To, D. Hyre, I. Le Trong, T.P. Lybrand and R.E. Stenkamp, Streptavidin-biotin binding energetics, Biomol Eng, 16 (1999) 39-44.
[72] T. Lazaridis, A. Masunov and F. Gandolfo, Contributions to the binding free energy of ligands to avidin and streptavidin, Proteins-Structure Function and Genetics, 47 (2002) 194-208.
[73] A. Chilkoti and P.S. Stayton, Molecular-Origins of the Slow Streptavidin-Biotin Dissociation Kinetics, Journal of the American Chemical Society, 117 (1995) 10622-10628.
[74] D.E. Hyre, I.L. Trong, S. Freitag, R.E. Stenkamp and P.S. Stayton, Ser45 plays an important role in managing both the equilibrium and transition state energetics of the streptavidin-biotin system, The Protein Society, 9 (2000) 878-885.
[75] L.A. Klumb, V. Chu and P.S. Stayton, Energetic roles of hydrogen bonds at the ureido oxygen binding pocket in the streptavidin-biotin complex, Biochemistry, 37 (1998) 7657-7663.
[76] Q. Li, S. Gusarov and A. Kovalenko, Molecular dynamics study of streptavidin binding to surface-immobilized biotin, International symposium on computer science and computational technology, (2008).
[77] N.M. Green, The use of [14C] biotin for kinetics studies and for assay(1963), Biochem. J., 89 (1963) 585-591.
[78] N.M.G.E.J. Toms, The Properties of Subunits of Avidin Coupled to Sepharose(1973), Biochem. J., 133 (1973) 687-700.
[79] D.E. Hyre, I. Le Trong, E.A. Merritt, J.F. Eccleston, N.M. Green, R.E. Stenkamp and P.S. Stayton, Cooperative hydrogen bond interactions in the streptavidin-biotin system, Protein science : a publication of the Protein Society, 15 (2006) 459-467.
[80] T.G.M. Schmidt, J. Koepke, R. Frank and A. Skerra, Molecular interaction between the Strep-tag affinity peptide and its cognate target, streptavidin, J. Mol. Biol., 255 (1996) 753-766.
[81] R. Stoltenburg, C. Reinemann and B. Strehlitz, FluMag-SELEX as an advantageous method for DNA aptamer selection, Analytical and bioanalytical chemistry, 383 (2005) 83-91.
[82] C. Wang, G. Yang, Z. Luo and H. Ding, In vitro selection of high-affinity DNA aptamers for streptavidin, Acta Biochimica et Biophysica Sinica, 41 (2009) 335-340.
[83] J.A. Bittker, B.V. Le and D.R. Liu, Nucleic acid evolution and minimization by nonhomologous random recombination, Nature biotechnology, 20 (2002) 1024-1029.
[84] T. Bing, X. Yang, H. Mei, Z. Cao and D. Shangguan, Conservative secondary structure motif of streptavidin-binding aptamers generated by different laboratories, Bioorganic & medicinal chemistry, 18 (2010) 1798-1805.
[85] S.S. Oh, K.M. Ahmad, M. Cho, S. Kim, Y. Xiao and H.T. Soh, Improving aptamer selection efficiency through volume dilution, magnetic concentration, and continuous washing in microfluidic channels, Analytical chemistry, 83 (2011) 6883-6889.
[86] J.E. Ladbury, Application of isothermal titration calorirnetry in the biological sciences: Things are heating up!, Biotechniques, 37 (2004 ) 885-887.
[87] B.M. Baker and K.P. Murphy, Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry, Biophysical journal, 71 (1996) 2049-2055.
[88] P.R. Connelly, R. Varadarajan, J.M. Sturtevant and F.M. Richards, Thermodynamics of Protein Peptide Interactions in the Ribonuclease-S System Studied by Titration Calorimetry, Biochemistry, 29 (1990) 6108-6114.
[89] R.S. Spolar and M.T. Record, Coupling of Local Folding to Site-Specific Binding of Proteins to DNA, Science, 263 (1994) 777-784.
[90] Y. Liang, Applications of isothermal titration calorimetry in protein science, Acta Biochimica et Biophysica Sinica, 40 (2008) 565-576.
[91] B.W. Sigurskjold, Exact analysis of competition ligand binding by displacement isothermal titration calorimetry, Analytical biochemistry, 277 (2000) 260-266.
[92] A. Velazquez-Campoy and E. Freire, Isothermal titration calorimetry to determine association constants for high-affinity ligands, Nature protocols, 1 (2006) 186-191.
[93] L. Velluz, M. Legrand and M. Grosjean, Optional circular dichroism, Academic, (1965).
[94] J.G. Lees, A.J. Miles, F. Wien and B.A. Wallace, A reference database for circular dichroism spectroscopy covering fold and secondary structure space, Bioinformatics, 22 (2006) 1955-1962.
[95] D.H.A. Correa and C.H.l. Ramos, The use of circular dichroism spectroscopy to study protein folding form and function, African Journal of Biochemistry Research, 3 (2009) 164-173.
[96] L. Whitmore and B.A. Wallace, Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases, Biopolymers, 89 (2008) 392-400.
[97] J. Kypr, I. Kejnovska, D. Renciuk and M. Vorlickova, Circular dichroism and conformational polymorphism of DNA, Nucleic acids research, 37 (2009) 1713-1725.
[98] J.R. Williamson, Induced fit in RNA-protein recognition, Nat Struct Biol, 7 (2000) 834-837.
[99] V. Chu, S. Freitag, I. Le Trong, R.E. Stenkamp and P.S. Stayton, Thermodynamic and structural consequences of flexible loop deletion by circular permutation in the streptavidin-biotin system, Protein science : a publication of the Protein Society, 7 (1998) 848-859.
[100] M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic acids research, 31 (2003) 3406-3415.
[101] B.I. Kankia and L.A. Marky, Folding of the thrombin aptamer into a G-quadruplex with Sr2+: Stability, heat, and hydration, Journal of the American Chemical Society, 123 (2001) 10799-10804.
[102] Q. Zhang, N.K. Kim, R.D. Peterson, Z. Wang and J. Feigon, Structurally conserved five nucleotide bulge determines the overall topology of the core domain of human telomerase RNA, Proceedings of the National Academy of Sciences of the United States of America, 107 (2010) 18761-18768.
[103] P.J. Lukavsky, I. Kim, G.A. Otto and J.D. Puglisi, Structure of HCV IRES domain II determined by NMR, Nat Struct Biol, 10 (2003) 1033-1038.
[104] N.M. Green and M.D. Melamed, Optical Rotatory Dispersion, Circular Dichroism and Far-Ultraviolet Spectra of Avidin and Streptavidin, Biochem. J., 100 (1966) 614-621.
[105] M. Kaul, C.M. Barbieri, J.E. Kerrigan and D.S. Pilch, Coupling of drug protonation to the specific binding of aminoglycosides to the A site of 16 S rRNA: elucidation of the number of drug amino groups involved and their identities, J Mol Biol, 326 (2003) 1373-1387.
[106] D.S. Pilch, M. Kaul, C.M. Barbieri and J.E. Kerrigan, Thermodynamics of aminoglycoside-rRNA recognition, Biopolymers, 70 (2003) 58-79.
[107] J.A. Cowan, T. Ohyama, D. Wang and K. Natarajan, Recognition of a cognate RNA aptamer by neomycin B: quantitative evaluation of hydrogen bonding and electrostatic interactions, Nucleic acids research, 28 (2000) 2935-2942.
[108] S.D. Gilbert, C.D. Stoddard, S.J. Wise and R.T. Batey, Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain, J Mol Biol, 359 (2006) 754-768.
[109] C.M. Barbieri, A.R. Srinivasan and D.S. Pilch, Deciphering the origins of observed heat capacity changes for aminoglycoside binding to prokaryotic and eukaryotic ribosomal RNA a-sites: a calorimetric, computational, and osmotic stress study, J Am Chem Soc, 126 (2004) 14380-14388.
[110] T. Hermann and D.J. Patel, Adaptive recognition by nucleic acid aptamers, Science, 287 (2000) 820-825.
[111] J.A. Holbrook, O.V. Tsodikov, R.M. Saecker and M.T.R. Jr, Specific and Non-specific Interactions of Integration Host Factor with DNA: Thermodynamic Evidence for Disruption of Multiple IHF Surface Salt-bridges Coupled to DNA Binding, J. Mol. Biol., 310 (2001) 379±401.
指導教授 陳文逸(Wen-yih Chen) 審核日期 2012-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明