博碩士論文 993211006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:3.144.43.78
姓名 薛楷勳(Kai-syun Syue)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 虛擬實境誘發體感覺事件相關電位P300之動態因果模型研究
(Neuronal correlates of Virtual Reality based sensory P300:A Dynamic Casual Modelling study)
相關論文
★ 足弓指標參數之比較分析★ 運用腦電波研究中風病人的復健成效 與持續情形
★ 重複間斷性Theta爆發刺激對手部運動之腦波的影響★ Amylose mediated electricity production of Staphylococcus epidermidis for inhibition of Cutibacterium acnes growth
★ 使用虛擬實境系統誘發事件相關電位P300之研究★ 使用GPU提升事件相關電位之動態因果模型的運算效能
★ 基於動態因果模型之老化相關的運動網路研究★ 應用腦電圖預測中風病人復健情況
★ 以益智遊戲進行空間工作記憶訓練在事件相關電位P3上的影響★ 基於虛擬實境復健之中風後運動網路功能性重組研究
★ 應用腦電圖與相關臨床因子預測中風病人復原之研究★ 中風復健後與虛擬實境物理參數 相關的動作網絡重組
★ 以運動指標預測復健成效暨設計復健方針★ 運用時頻轉換分析方法研究 工作記憶訓練之人類大腦可塑性
★ 中風患者在復健後的大腦神經連結的變化★ 運用N-back任務和空間工作記憶訓練分析神經相關性能之ERP和DCM研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 事件相關電位P300在認知神經科學上廣泛的被應用,它最常利用新異刺激程序所誘發,儘管現有許多研究於探討P300在大腦中產生的機制,特別在它的神經網路與功能上,但到目前為止仍尚未有定論。
本研究的目的在於應用事件相關電位之動態因果模型探討體感覺P300在大腦中的神經網路。此外,本研究還利用網路的連結強度與因果關係說明其功能性,當中體感覺P300是以3D虛擬實境所建立的新異刺激程序所誘發。本研究收錄10位健康的右撇子受試者,使他們在虛擬實境下使用慣用手進行接球遊戲,並同時測量腦電波。接球遊戲中有兩種刺激條件,分為標準刺激(有力回饋)與靶刺激(無力回饋),發生次數分別為479次與121次(機率80%與20%),藉此誘發體感覺P300。本研究收集30頻道腦電波與2頻道眼動訊號,取樣頻率為250Hz。腦電波離線的處理步驟包含,以刺激發生當下-500至1000毫秒為分段、30Hz的低通濾波器、全自動校正法去除眼動之干擾、最後將相同試驗取平均,以進行傳統的事件相關電位研究。在動態因果模型中,我們取腦電波的0至900毫秒進行主成分分析法,在盡可能保留最大資訊下將維度降低至9,並以此資料進行分析。起初,我們以3篇先前的文獻為基礎,將每篇文獻做單邊性輸入與雙邊性輸入的區分,建構出六種不同的模型,試圖找出最合適的神經網路結構。最後,將最合適的神經網路結構進行Forward、Backward與Forward-backward連結調變的分析,以找出靶刺激與標準刺激的連結差異處。
傳統事件相關電位的結果顯示,在虛擬實境下進行接球遊戲確實可誘發體感覺P300。動態因果模型的分析結果顯示,先前文獻所提出的頂葉-額葉網路較能解釋大腦在體感覺新異刺激程序下的活動。在我們的實驗設計下,P300藉由神經網路的Forward與Backward連結調變所產生,當中Forward連結調變的重要性又高於Backward連結調變,Forward的連結調變意味著感覺的訊息、目標的自動偵測、刺激驅使的注意力處理和記憶的更新與儲存所產生的變化。相反的,Backward的連結調變意味著注意力與運動的控制所產生的變化,在我們的實驗設計下,受試者不需對刺激做任何的反應(例如:按按鈕),因此導致Backward的連結調變是較不重要的。
摘要(英) P300, an event-related potential evoked by oddball paradigm, has drawn a lot of attentions in cognitive neuroscience. Many efforts have been put on the study of the generating mechanism underlying P300, in particular, the network architectures and their possible functional roles, yet the conclusion has not been reached.
In this study, we aim to explore the hierarchical network of sensory P300 production by dynamic causal modelling for event-related potential (DCM for ERP) with a VR based novel oddball paradigm. Moreover, we investigate the connection strength changes and causal relationship of this P300 network to address the possible functional roles. Ten healthy right-handed volunteers underwent electroencephalogram recording while performing a catch-ball game using their dominant hand in 3-D Virtual Reality environment. For eliciting sensory P300, the game was designed to comprise two types of tactile stimuli: standard (with force feedback via a haptic feedback system) and target (without force feedback), with the 479 and 121 trials (i.e. 80% and 20%occurring), respectively. 30 channels electroencephalogram (EEG) and 2 channels electrooculography (EOG) were recorded with 250 Hz sampling rate during the task. The data were epoched offline, with a peristimulus window of -500 to1000 ms, filtered with 30 Hz low-pass filter, artefact removal using the fully automated correction method and averaged across artefact-free trials for classical ERP study. In DCM analysis, the time window of interest was set from 0 to 900ms, and the data were reduced to nine key dimensions using principal component analysis for computational expense. We first specify six plausible models, differed in the areas and the input based on three previous literatures, to identify the most likely model hierarchy. Then the target-specific modulation effects in terms of forward, backward and forward-backward were tested based on the winning model.
Classical event-related potentials analysis suggested that the catch-ball game based on 3-D Virtual Reality can be used to elicit the somatosensory P300 components reliably. DCM results show that the parietal-frontal network was the most possible model among models tested to explain the brain activity during this sensory oddball paradigm. In our experiment, the P300 was generated by the network with forward and backward modulations, and the contribution of forward modulations to the generation of P300 was significantly greater than that of backward modulations. The functional role of this forward modulation may involve in the delivery of the sensory information and the automatic detection of difference, the stimulus-driven attentional processes and the memory operation related to context-updating and subsequent memory storage. In contrast, the backward modulation was thought to engage in attention control and motor control, which is absent (i.e. no motor output requested) in our experiment, and leads to a minor contribution to our model.
關鍵字(中) ★ 動態因果模型
★ 體感覺P300
關鍵字(英) ★ Somatosensory P300
★ Dynamic causal modelling
論文目次 摘要 I
ABSTRACT II
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 1
1.3 論文架構 2
第二章 文獻回顧 3
2-1 腦電波圖原理簡介 3
2.1.1 神經電生理與腦電波圖 3
2.1.3 10-20系統 4
2.2 事件相關電位成分P300 5
2.2.1 事件相關電位 5
2.2.2 P300簡介 7
2.2.3 P300的神經來源 9
2.2.4 影響P300的因素 11
2.2.5 P300在臨床上的運用 12
2.3 動態因果模型 13
2.3.1動態因果模型簡介 13
2.3.2 動態因果模型理論 15
第三章 實驗方法與流程 26
3.1 實驗設計 26
3.2 實驗參數 27
3.3 研究工具 28
3.3.1 硬體部分 28
3.3.2 軟體部份 29
3.4 傳統事件相關電位的分析 30
3.5 動態因果模型的分析 33
3.5.1 動態因果模型的建構 34
3.5.2 動態因果模型的選擇 37
3.5.3 動態因果模型的參數 39
第四章 研究結果 40
4.1 接球準確率 40
4.2傳統事件相關電位的分析 41
4.2.1全自動校正法適用與否 41
4.2.2 體感覺誘發電位 45
4.2.3 事件相關電位 P300 50
4.3 動態因果模型的分析 56
4.3.1 模型的選擇 56
4.3.2 模型的連結強度與增益 62
4.3.3 連結增益的統計分析 64
4.3.4 動態因果模型的輸出 65
4.3.5 平均P300大腦網路模型 69
第五章 討論與結論 71
5.1 全自動校正法 71
5.2 體感覺誘發電位 72
5.3 P300的振幅 73
5.4 P300的分布 74
5.5 P300的LATENCY 75
5.5 動態因果模型的輸入 76
5.6 P300大腦網路模型闡述 77
5.7 模型複雜度與結果的相關性 79
5.8 實驗設計 81
5.9 結論 82
第六章 未來展望 83
第七章 參考文獻 84
附錄 90
參考文獻 [1] S. Sanei and J. A. Chambers, EEG Signal Processing, 1st ed. Wiley-Interscience, 2007.
[2] P. Montoya and C. Sitges, “Affective modulation of somatosensory-evoked potentials elicited by tactile stimulation,” Brain Research, vol. 1068, no. 1, pp. 205–212, Jan. 2006.
[3] C. Bledowski, D. Prvulovic, R. Goebel, F. E. Zanella, and D. E. . Linden, “Attentional systems in target and distractor processing: a combined ERP and fMRI study,” NeuroImage, vol. 22, no. 2, pp. 530–540, Jun. 2004.
[4] C. Brown, “Auditory target processing in an inter-modal oddball task: effects of stimuli from multiple sensory modalities on the auditory event-related potential,” University of Wollongong Thesis Collection, Jan. 2011.
[5] C. C. Duncan, R. J. Barry, J. F. Connolly, C. Fischer, P. T. Michie, R. Naatanen, J. Polich, I. Reinvang, and C. Van Petten, “Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400,” Clinical Neurophysiology, vol. 120, no. 11, pp. 1883–1908, Nov. 2009.
[6] S. J. Luck, G. F. Woodman, and E. K. Vogel, “Event-related potential studies of attention,” Trends in Cognitive Sciences, vol. 4, no. 11, pp. 432–440, Nov. 2000.
[7] S. Sutton, M. Braren, J. Zubin, and E. R. John, “Evoked-Potential Correlates of Stimulus Uncertainty,” Science, vol. 150, no. 3700, pp. 1187–1188, Nov. 1965.
[8] N. K. Squires, K. C. Squires, and S. A. Hillyard, “Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man,” Electroencephalography and Clinical Neurophysiology, vol. 38, no. 4, pp. 387–401, Apr. 1975.
[9] J. Polich, “Updating P300: An integrative theory of P3a and P3b,” Clinical Neurophysiology, vol. 118, no. 10, pp. 2128–2148, Oct. 2007.
[10] R. Verleger, “P3b: Towards some decision about memory,” Clinical Neurophysiology, vol. 119, no. 4, pp. 968–970, Apr. 2008.
[11] J. Polich and A. Kok, “Cognitive and biological determinants of P300: an integrative review,” Biological Psychology, vol. 41, no. 2, pp. 103–146, Oct. 1995.
[12] D. E. J. Linden, “The P300: Where in the Brain Is It Produced and What Does It Tell Us?,” Neuroscientist, vol. 11, no. 6, pp. 563–576, Dec. 2005.
[13] M. Huang, C. . Aine, S. Supek, E. Best, D. Ranken, and E. . Flynn, “Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography,” Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, vol. 108, no. 1, pp. 32–44, Jan. 1998.
[14] C. Wang, I. Ulbert, D. L. Schomer, K. Marinkovic, and E. Halgren, “Responses of Human Anterior Cingulate Cortex Microdomains to Error Detection, Conflict Monitoring, Stimulus-Response Mapping, Familiarity, and Orienting,” J. Neurosci., vol. 25, no. 3, pp. 604–613, Jan. 2005.
[15] P. Baudena, E. Halgren, G. Heit, and J. M. Clarke, “Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex,” Electroencephalography and Clinical Neurophysiology, vol. 94, no. 4, pp. 251–264, Apr. 1995.
[16] V. Molina, J. Sanz, F. Munoz, P. Casado, J. A. Hinojosa, F. Sarramea, and M. Martin-Loeches, “Dorsolateral prefrontal cortex contribution to abnormalities of the P300 component of the event-related potential in schizophrenia,” Psychiatry Research: Neuroimaging, vol. 140, no. 1, pp. 17–26, Oct. 2005.
[17] I. M. Tarkka, D. S. Stokić, L. F. H. Basile, and A. C. Papanicolaou, “Electric source localization of the auditory P300 agrees with magnetic source localization,” Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, vol. 96, no. 6, pp. 538–545, Nov. 1995.
[18] B. F. O’Donnell, R. A. Cohen, H. Hokama, B. N. Cuffin, C. Lippa, M. E. Shenton, and D. A. Drachman, “Electrical source analysis of auditory ERPs in medial temporal lobe amnestic syndrome,” Electroencephalography and Clinical Neurophysiology, vol. 87, no. 6, pp. 394–402, Dec. 1993.
[19] R. T. Knight, D. Scabini, D. L. Woods, and C. C. Clayworth, “Contributions of temporal-parietal junction to the human auditory P3,” Brain Research, vol. 502, no. 1, pp. 109–116, Nov. 1989.
[20] I. M. Tarkka, S. Micheloyannis, and D. . Stokić, “Generators for human P300 elicited by somatosensory stimuli using multiple dipole source analysis,” Neuroscience, vol. 75, no. 1, pp. 275–287, Sep. 1996.
[21] E. Ludowig, C. G. Bien, C. E. Elger, and T. Rosburg, “Two P300 generators in the hippocampal formation,” Hippocampus, vol. 20, no. 1, pp. 186–195, May 2009.
[22] E. Halgren, N. K. Squires, C. L. Wilson, J. W. Rohrbaugh, T. L. Babb, and P. H. Crandall, “Endogenous Potentials Generated in the Human Hippocampal Formation and Amygdala by Infrequent Events,” Science, vol. 210, no. 4471, pp. 803–805, Nov. 1980.
[23] J. Wang, K.-I. Hiramatsu, H. Hokama, H. Miyazato, and C. Ogura, “Abnormalities of auditory P300 cortical current density in patients with schizophrenia using high density recording,” International Journal of Psychophysiology, vol. 47, no. 3, pp. 243–253, Mar. 2003.
[24] E. Halgren, P. Baudena, J. M. Clarke, G. Heit, C. Liegeois, P. Chauvel, and A. Musolino, “Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe,” Electroencephalography and Clinical Neurophysiology, vol. 94, no. 3, pp. 191–220, Mar. 1995.
[25] B. He, J. Lian, K. M. Spencer, J. Dien, and E. Donchin, “A cortical potential imaging analysis of the P300 and Novelty P3 components,” Human Brain Mapping, vol. 12, no. 2, pp. 120–130, Jan. 2001.
[26] M. E. Smith, E. Halgren, M. Sokolik, P. Baudena, A. Musolino, C. Liegeois-Chauvel, and P. Chauvel, “The intracranial topography of the P3 event-related potential elicited during auditory oddball,” Electroencephalography and Clinical Neurophysiology, vol. 76, no. 3, pp. 235–248, Sep. 1990.
[27] P. Anderer, R. D. Pascual-Marqui, H. V. Semlitsch, and B. Saletu, “Differential effects of normal aging on sources of standard N1, target N1 and target P300 auditory event-related brain potentials revealed by low resolution electromagnetic tomography (LORETA),” Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, vol. 108, no. 2, pp. 160–174, Mar. 1998.
[28] I. Kiss, R. M. Dashieff, and P. Lordeon, “A parieto-occipital generator for P300: evidence from human intracranial recordings,” Int. J. Neurosci., vol. 49, no. 1–2, pp. 133–139, Nov. 1989.
[29] G. McCarthy, M. Luby, J. Gore, and P. Goldman-Rakic, “Infrequent Events Transiently Activate Human Prefrontal and Parietal Cortex as Measured by Functional MRI,” J Neurophysiol, vol. 77, no. 3, pp. 1630–1634, Mar. 1997.
[30] V. Menon, J. M. Ford, K. O. Lim, G. H. Glover, and A. Pfefferbaum, “Combined event-related fMRI and EEG evidence for temporal-parietal cortex activation during target detection,” Neuroreport, vol. 8, no. 14, pp. 3029–3037.
[31] D. E. J. Linden, D. Prvulovic, E. Formisano, M. Vollinger, F. E. Zanella, R. Goebel, and T. Dierks, “The Functional Neuroanatomy of Target Detection: An fMRI Study of Visual and Auditory Oddball Tasks,” Cereb. Cortex, vol. 9, no. 8, pp. 815–823, Dec. 1999.
[32] T. Yoshiura, J. Zhong, D. K. Shibata, W. E. Kwok, D. A. Shrier, and Y. Numaguchi, “Functional MRI study of auditory and visual oddball tasks,” Neuroreport, vol. 10, no. 8, pp. 1683–1688.
[33] V. P. Clark, S. Fannon, S. Lai, R. Benson, and L. Bauer, “Responses to Rare Visual Target and Distractor Stimuli Using Event-Related fMRI,” J Neurophysiol, vol. 83, no. 5, pp. 3133–3139, May 2000.
[34] K. A. Kiehl and P. F. Liddle, “An event-related functional magnetic resonance imaging study of an auditory oddball task in schizophrenia,” Schizophrenia Research, vol. 48, no. 2–3, pp. 159–171, Mar. 2001.
[35] B. A. Ardekani, S. J. Choi, G.-A. Hossein-Zadeh, B. Porjesz, J. L. Tanabe, K. O. Lim, R. Bilder, J. A. Helpern, and H. Begleiter, “Functional magnetic resonance imaging of brain activity in the visual oddball task,” Cognitive Brain Research, vol. 14, no. 3, pp. 347–356, Nov. 2002.
[36] A. A. Stevens, P. Skudlarski, J. C. Gatenby, and J. C. Gore, “Event-related fMRI of auditory and visual oddball tasks,” Magnetic Resonance Imaging, vol. 18, no. 5, pp. 495–502, Jun. 2000.
[37] G. McCarthy, C. C. Wood, P. D. Williamson, and D. D. Spencer, “Task-Dependent Field Potentials in Human Hippocampal Formation,” J. Neurosci., vol. 9, no. 12, pp. 4253–4268, Dec. 1989.
[38] P. S. Goldman-Rakic, “Topography of Cognition: Parallel Distributed Networks in Primate Association Cortex,” Annual Review of Neuroscience, vol. 11, no. 1, pp. 137–156, 1988.
[39] J. Polich and M. R. D. Heine, “P300 topography and modality effects from a single‐stimulus paradigm,” Psychophysiology, vol. 33, no. 6, pp. 747–752, Nov. 1996.
[40] J. Katayama and J. Polich, “Auditory and visual P300 topography from a 3 stimulus paradigm,” Clinical Neurophysiology, vol. 110, no. 3, pp. 463–468, Mar. 1999.
[41] E. Mervaala, A. Paakkonen, and J. V. Partanen, “The influence of height, age and gender on the interpretation of median nerve SEPs,” Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, vol. 71, no. 2, pp. 109–113, Mar. 1988.
[42] J. W. Covington and J. Polich, “P300, stimulus intensity, and modality,” Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, vol. 100, no. 6, pp. 579–584, Nov. 1996.
[43] C. C. Duncan‐Johnson and E. Donchin, “On Quantifying Surprise: The Variation of Event‐Related Potentials With Subjective Probability,” Psychophysiology, vol. 14, no. 5, pp. 456–467, Jan. 2007.
[44] T. W. Picton and D. T. Stuss, “The Component Structure of the Human Event-Related Potentials,” in Progress in Brain Research, vol. Volume 54, Elsevier, 1980, pp. 17–49.
[45] D. L. Woods and E. Courchesne, “The recovery functions of auditory event-related potentials during split-second discriminations,” Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, vol. 65, no. 4, pp. 304–315, Jul. 1986.
[46] J. Polich, “Probability and inter-stimulus interval effects on the P300 from auditory stimuli,” International Journal of Psychophysiology, vol. 10, no. 2, pp. 163–170, Dec. 1990.
[47] J. Polich, “P300, probability, and interstimulus interval,” Psychophysiology, vol. 27, no. 4, pp. 396–403, Jul. 1990.
[48] D. S. Goodin, K. C. Squires, B. H. Henderson, and A. Starr, “Age-related variations in evoked potentials to auditory stimuli in normal human subjects,” Electroencephalography and Clinical Neurophysiology, vol. 44, no. 4, pp. 447–458, Apr. 1978.
[49] J. Polich, L. Howard, and A. Starr, “Effects of Age on the P300 Component of the Event-Related Potential From Auditory Stimuli: Peak Definition, Variation, and Measurement,” J Gerontol, vol. 40, no. 6, pp. 721–726, Nov. 1985.
[50] Y. Hirayasu, M. Samura, H. Ohta, and C. Ogura, “Sex effects on rate of change of P300 latency with age,” Clinical Neurophysiology, vol. 111, no. 2, pp. 187–194, Feb. 2000.
[51] J. M. Ford, W. T. Roth, and B. S. Kopell, “Auditory Evoked Potentials to Unpredictable Shifts in Pitch,” Psychophysiology, vol. 13, no. 1, pp. 32–39, Jan. 1976.
[52] C. Kemner, M. N. Verbaten, J. M. Cuperus, G. Camfferman, and H. van Engeland, “Auditory event-related brain potentials in autistic children and three different control groups,” Biological Psychiatry, vol. 38, no. 3, pp. 150–165, Aug. 1995.
[53] A. P. Anokhin, A. B. Vedeniapin, E. J. Sirevaag, L. O. Bauer, S. J. O’Connor, S. Kuperman, B. Porjesz, T. Reich, H. Begleiter, J. Polich, and J. W. Rohrbaugh, “The P300 brain potential is reduced in smokers,” Psychopharmacology, vol. 149, no. 4, pp. 409–413, 2000.
[54] B. . O’Donnell, J. . Vohs, W. . Hetrick, C. . Carroll, and A. Shekhar, “Auditory event-related potential abnormalities in bipolar disorder and schizophrenia,” International Journal of Psychophysiology, vol. 53, no. 1, pp. 45–55, Jun. 2004.
[55] B. Porjesz, M. Rangaswamy, C. Kamarajan, K. A. Jones, A. Padmanabhapillai, and H. Begleiter, “The utility of neurophysiological markers in the study of alcoholism,” Clinical Neurophysiology, vol. 116, no. 5, pp. 993–1018, May 2005.
[56] H. H. Birdsall, L. N. Ozluoglu, H. L. Lew, J. Trial, D. P. Brown, M. J. Wofford, J. F. Jerger, and R. D. Rossen, “Auditory P300 abnormalities and leukocyte activation in HIV infection,” Otolaryngol Head Neck Surg, vol. 110, no. 1, pp. 53–59, Jan. 1994.
[57] M. F. BEAR, NEUROSCIENCE-Exploring the Brain, THIRD ed. .
[58] 孫俊峰, 洪祥飛, and 童善保, “複雜腦網路研究進展-結構、功能、計算與應用,” 複雜系統與複雜性科學, vol. 7, no. 4, p. 74, 2010.
[59] D. Xin, “人腦功能連通性研究進展,” 生物化學與生物物理進展, vol. 34, no. 1, pp. 5–12, 2007.
[60] C. J. Stam, J. P. M. Pijn, P. Suffczynski, and F. H. Lopes da Silva, “Dynamics of the human alpha rhythm: evidence for non-linearity?,” Clinical Neurophysiology, vol. 110, no. 10, pp. 1801–1813, Oct. 1999.
[61] F. Wendling, F. Bartolomei, J. J. Bellanger, and P. Chauvel, “Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition,” European Journal of Neuroscience, vol. 15, no. 9, pp. 1499–1508, May 2002.
[62] K. J. Friston, L. Harrison, and W. Penny, “Dynamic causal modelling,” NeuroImage, vol. 19, no. 4, pp. 1273–1302, Aug. 2003.
[63] B. H. Jansen and V. Rit, “Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns,” Biological Cybernetics, vol. 73, no. 4, pp. 357–366, 1995.
[64] O. David, L. Harrison, and K. J. Friston, “Modelling event-related responses in the brain,” NeuroImage, vol. 25, no. 3, pp. 756–770, Apr. 2005.
[65] D. J. Felleman and D. C. Van Essen, “Distributed Hierarchical Processing in the Primate Cerebral Cortex,” Cereb. Cortex, vol. 1, no. 1, pp. 1–47, Jan. 1991.
[66] O. David, S. J. Kiebel, L. M. Harrison, J. Mattout, J. M. Kilner, and K. J. Friston, “Dynamic causal modeling of evoked responses in EEG and MEG,” NeuroImage, vol. 30, no. 4, pp. 1255–1272, May 2006.
[67] J. C. Mosher, R. M. Leahy, and P. S. Lewis, “EEG and MEG: forward solutions for inverse methods,” Biomedical Engineering, IEEE Transactions on, vol. 46, no. 3, pp. 245 –259, Mar. 1999.
[68] K. J. Friston, W. Penny, C. Phillips, S. Kiebel, G. Hinton, and J. Ashburner, “Classical and Bayesian Inference in Neuroimaging: Theory,” NeuroImage, vol. 16, no. 2, pp. 465–483, Jun. 2002.
[69] K. J. Friston, D. E. Glaser, R. N. A. Henson, S. Kiebel, C. Phillips, and J. Ashburner, “Classical and Bayesian Inference in Neuroimaging: Applications,” NeuroImage, vol. 16, no. 2, pp. 484–512, Jun. 2002.
[70] A. Schlogl, C. Keinrath, D. Zimmermann, R. Scherer, R. Leeb, and G. Pfurtscheller, “A fully automated correction method of EOG artifacts in EEG recordings,” Clinical Neurophysiology, vol. 118, no. 1, pp. 98–104, Jan. 2007.
[71] J. Downar, A. P. Crawley, D. J. Mikulis, and K. D. Davis, “A multimodal cortical network for the detection of changes in the sensory environment,” Nat. Neurosci., vol. 3, no. 3, pp. 277–283, Mar. 2000.
[72] S. Crottaz-Herbette and V. Menon, “Where and When the Anterior Cingulate Cortex Modulates Attentional Response: Combined fMRI and ERP Evidence,” Journal of Cognitive Neuroscience, vol. 18, no. 5, pp. 766–780, 2006.
[73] M.-X. Huang, R. R. Lee, G. A. Miller, R. J. Thoma, F. M. Hanlon, K. M. Paulson, K. Martin, D. L. Harrington, M. P. Weisend, J. C. Edgar, and J. M. Canive, “A parietal-frontal network studied by somatosensory oddball MEG responses, and its cross-modal consistency,” Neuroimage, vol. 28, no. 1, pp. 99–114, Oct. 2005.
[74] J. Kekoni, H. Hamalainen, M. Saarinen, J. Grohn, K. Reinikainen, A. Lehtokoski, and R. Naatanen, “Rate effect and mismatch responses in the somatosensory system: ERP-recordings in humans,” Biological Psychology, vol. 46, no. 2, pp. 125–142, Aug. 1997.
[75] J. Polich, Detection of Change: Event-Related Potential and Fmri Findings. Springer, 2003.
[76] Z. Zhu, E. A. Disbrow, J. M. Zumer, D. J. McGonigle, and S. S. Nagarajan, “Spatiotemporal integration of tactile information in human somatosensory cortex,” BMC Neuroscience, vol. 8, no. 1, p. 21, 2007.
[77] L. Li, C. Gratton, M. Fabiani, and R. T. Knight, “Age-related frontoparietal changes during the control of bottom-up and top-down attention: an ERP study,” Neurobiology of Aging, no. 0.
[78] L. Wang, X. Liu, K. G. Guise, R. T. Knight, J. Ghajar, and J. Fan, “Effective connectivity of the fronto-parietal network during attentional control,” J Cogn Neurosci, vol. 22, no. 3, pp. 543–553, Mar. 2010.
[79] J. L. Kenemans and S. Kahkonen, “How Human Electrophysiology Informs Psychopharmacology: from Bottom-up Driven Processing to Top-Down Control,” Neuropsychopharmacology, vol. 36, no. 1, pp. 26–51, Oct. 2010.
[80] J. B. Hopfinger, M. H. Buonocore, and G. R. Mangun, “The neural mechanisms of top-down attentional control,” Nat. Neurosci., vol. 3, no. 3, pp. 284–291, Mar. 2000.
[81] N. S. Narayanan and M. Laubach, “Top-down control of motor cortex ensembles by dorsomedial prefrontal cortex,” Neuron, vol. 52, no. 5, pp. 921–931, Dec. 2006.
指導教授 陳純娟(Chun-chuan Chen) 審核日期 2012-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明