博碩士論文 993204047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.118.184.237
姓名 吳承翰(Chen-Han Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 人類脂肪幹細胞的膜純化法與分化能力研究
(Purification and Differentiation of Human Adipose-derived Stem cells by Membrane Filtration Method)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究
★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究
★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上★ 使用不同孔洞大小之耐倫薄膜從脂肪組織中分離及純化人類脂肪幹細胞之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 脂肪幹細胞對於再生醫學生上是個很棒的幹細胞來源,由於它具有大量且低手術傷害性取得等優點。此外,脂肪幹細胞具有分化成中胚層細胞的能力,像是骨細胞、軟骨細胞、肌肉細胞等。甚至能分化成外胚層的細胞,像是神經細胞。因此脂肪幹細胞在組織再生醫學與組織工程學上被視為極具潛力的幹細胞來源。
目前組織純化細胞的方法最傳統的方式為細胞培養法,然後這種方法需要長時間的培養與繼代。螢光活性細胞分選 (FACS)和磁力活性細胞分選(MACS)也常選用作為組織細胞的純化萃取,但這種利用抗體專一性分離的方法,抗體可能有病毒汙染和高成本的疑慮。膜分離法具有簡單快速等優點,且分離過程在完全無汙染的環境中。此項研究試圖從人類脂肪組織中萃取出含有SVF的初代細胞溶液中,快速萃取出可表現脂肪幹細胞表面標誌且具有分化能力細胞。
我們使用傾注式過濾法,由於此法有一開口可宣洩壓力,不會推擠細胞通過過濾膜。另外準備5μm、12μm和白血球細胞移除膜(leukocyte removal filter)等具有不同孔洞大小的複雜結構聚氨酯膜。在初代代細胞通過過濾膜後所得之細胞溶液稱之為過濾液,然後再由相反方向注入培養液所得到未能通過膜的細胞之細胞溶液稱之為回收液。藉由流式細胞儀分析細胞表面標誌和測試細胞的分化能力,其結果顯示出12μm 孔洞大小的聚氨酯膜具有較佳的分離效果。另外我們也測試經表面改質過後的聚氨酯膜,但結果顯示經改質過後的膜具有較強的幹細胞吸附性,降低了分離的效果。
摘要(英) Adipose-derived stem cells (ADSCs) are a promising cell source in regenerative medicine, of particular utility for cell therapies and tissue engineering, because adipose tissue can easily be harvested in large quantities compared to bone marrow, and ADSCs have high proliferation rates in culture. ADSCs are isolated from adipose tissue by liposuction and centrifugation followed by cultivation on cell culture dishes for at least one passage. The cultivation of cells derived from adipose tissue is necessary to purify ADSCs (i.e., “the culture method” for the purification of ADSCs) because the adipose tissue contains not only ADSCs but also adipose and other types of cells. The culture process for the purification of ADSCs requires several days, at minimum. If ADSCs can be purified from adipose tissue in a short period of time (i.e., less than 2 hrs) by using a cell purification device such as the membrane filtration method, cell therapy and tissue engineering applications using autologous ADSCs might become more efficient.
Therefore, we investigated the purification of human ADSCs from a digested solution of adipose tissue by the membrane filtration method in this study, and we compared the purity of ADSCs and the differentiation ability of ADSCs into osteoblasts after purification by the membrane filtration method and the conventional cell culture method.
We investigated two filtration methods to purify hADSC, i.e., batch-type and perfusion-type filtration methods. Main differences between these two filtration methods are cell flow direction to the membranes. Polyurethane foaming membranes having 5-12 μm of pore size were used as the membranes for the separation of hADSCs from human adipose tissue. The surface marker of ADSCs (e.g., CD73 and CD90) in the cells in the permeate and recovery solutions were analyzed by flow cytometry whether the mesenchymal stem cells were enriched after permeation through the membranes. The differentiation of cells into osteoblasts, which were separated by the membrane filtration method was evaluated to confirm the enriched hADSC in the permeate solution through the membranes by culture of the cells in induced medium of osteogenic differentiation.
We, further, investigated the isolation of ADSCs by the membrane filtration method through surface-modified PU membranes having with various nanosegments (e.g., -NH2, -SO3H, -OH, and -COOH) and ECMs, and compared the isolation efficiency of ADSCs purified through nonmodified PU membranes and surface-modified PU membranes. We found that the cells separated through PU membranes by the perfusion method showed high popuration of ADSCs from surface marker analysis and the highest osteogenic differentiation ability.
關鍵字(中) ★ 間葉幹細胞
★ 成骨分化
★ 人類脂肪幹細胞
★ 膜純化法
關鍵字(英) ★ Human Adipose-derived Stem Cells
★ Membrane Filtration method
★ Mesenchymal stem cells
★ Osteogenic differentiation
論文目次 摘要 ....................................................................................................................................................... I
Index of Contents .............................................................................................................................. IV
Index of Figures ...............................................................................................................................VII
Index of Tables ............................................................................................................................... XIV
Chapter 1. Introduction ...............................................................................................................1
1-1 Stem Cells ............................................................................................................................1
1-2 Adipose-derived stem cells (ADSCs).................................................................................2
1-3 Cell molecular marker of adipose-derived stem cell .......................................................4
1-3.1 Immunophentype ........................................................................................................4
1-3.2 Gene expression of ADSCs .........................................................................................7
1-4 Isolation of adipose-derived stem cells .............................................................................8
1-4.1 Cell isolation ...............................................................................................................8
1-4.2 Membrane Purification ..............................................................................................9
1-5 Differentiation capacity of adipose-derived stem cells ..................................................10
1-5.1 Lineage-specific differentiation potential ................................................................10
1-5.2 Adipogenic differentiation ........................................................................................ 11
1-5.3 Chondrogenic/Osteogenic differentiation ................................................................12
1-5.4 Myogenic/cardiomyogenic differentiation ...............................................................14
1-5.5 Other effect factor of MSC differentiation ..............................................................15
1-6 Extracellular matrix .........................................................................................................16
1-6.1 Collagen (Col) ...........................................................................................................16
1-6.2 Fibronectin (FN) ......................................................................................................19
1-7 Flow cytometry .................................................................................................................20
1-8 Polymerase chain reaction (PCR) ...................................................................................23
1-8.1 Introduction of PCR .................................................................................................23
1-8.2 The procedure of PCR ..............................................................................................24
Chapter 2. Materials and Methods ...........................................................................................27
2-1 Materials .............................................................................................................................27
2-1.1 Chemicals ..................................................................................................................27
2-1.2 Consumable apparatus ..............................................................................................28
2-1.3 Instruments ................................................................................................................29
2-2 Experimental Methods .......................................................................................................30
2-2.1 PBS (phosphate buffer saline solution) preparation .................................................30
2-2.2 Culture medium preparation .....................................................................................30
2-2.3 Cell culture and passages ..........................................................................................30
2-2.4 Isolation and culture of adipose tissue-derived stromal cell .....................................32
2-2.5 Preparation of surface-mdified PU foaming membranes ..........................................33
2-2.5.1 Coating method .....................................................................................................34
2-2.5.2 Chemical grafting method .....................................................................................34
2-2.6 Cell purification (membrane method) .......................................................................37
2-2.7 Differentiation of adipose tissue-derived Stem cell ...................................................38
2-2.8 Immunology staining .................................................................................................38
2-2.9 Alizarin red S staining ...............................................................................................38
2-2.10 von Kossa staining ................................................................................................39
2-2.11 Quantitative analysis of osteogenesis ...................................................................39
2-2.12 Alkaline phosphatase activity ................................................................................40
2-2.13 Isolation of total RNA ............................................................................................40
2-2.14 Reverse Transcription of mRNA into cDNA ..........................................................41
2-2.15 PCR (Polymerase Chain Reaction) .......................................................................43
2-2.16 Scanning electron microscopy (SEM) analysis .....................................................44
Chapter 3. Results and Discussion ............................................................................................45
3-1 Surface characterization of PU membrane .........................................................................45
3-2 Characterization of human adipose derived stem cells (hADSC) ......................................48
3-2.1 Cell culture method....................................................................................................48
3-3 Purification of adipose tissue-derived stem cells by membrane filtration method .............51
3-3.1 Effect of different pore size of PU membrane ............................................................52
3-3.1.1 Flow cytometry analysis of human adipose tissue solution ..................................52
3-3.1.2 The differentiation ability of ADSC purified by different pore size of PU membranes
and different commercial membranes .........................................................................................57
3-3.2 Effect of functional groups of 12μm PU membranes on purification of hADSCs .....60
3-3.2.1 Flow cytometry analysis of human adipose tissue solution ..................................60
3-3.2.2 The differentiation ability of cells in recovery solution through 12μm PU
membrane having different functional groups ............................................................................65
3-3.3 Effect of 12μm PU membrane having ECMs .............................................................72
3-3.3.1 Flow cytometry ......................................................................................................72
3-3.3.2 The differentiation ability of cells in recovery solution through 12μm PU
membrane coated with ECMs .....................................................................................................75
Chapter 4. Conclusion ................................................................................................................81
Supplementary data ..........................................................................................................................83
Reference ............................................................................................................................................87
參考文獻 [1] P. A. Hall and F. M. Watt, "Stem cells: the generation and maintenance of cellular diversity," Development, vol. 106, pp. 619-33, Aug 1989.
[2] A. J. Becker and E. A. McCulloch, Till, James E., "Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells," Nature, pp. 452-454, 1963.
[3] L. Siminovitch, McCulloch, Ernest A., Till, James E., "The distribution of colony-forming cells among spleen colonies," Journal of Cellular and Comparative Physiology pp. 327-336, 1963.
[4] A. J. Friedenstein, J. F. Gorskaja, and N. N. Kulagina, "Fibroblast precursors in normal and irradiated mouse hematopoietic organs," Experimental Hematology, vol. 4, pp. 267-74, Sep 1976.
[5] K. Le Blanc and O. Ringden, "Mesenchymal stem cells: properties and role in clinical bone marrow transplantation," Curr Opin Immunol, vol. 18, pp. 586-91, Oct 2006.
[6] Y. Lin, X. Chen, Z. Yan, L. Liu, W. Tang, X. Zheng, Z. Li, J. Qiao, S. Li, and W. Tian, "Multilineage differentiation of adipose-derived stromal cells from GFP transgenic mice," Mol Cell Biochem, vol. 285, pp. 69-78, Apr 2006.
[7] M. Crisan, S. Yap, L. Casteilla, C. W. Chen, M. Corselli, T. S. Park, G. Andriolo, B. Sun, B. Zheng, L. Zhang, C. Norotte, P. N. Teng, J. Traas, R. Schugar, B. M. Deasy, S. Badylak, H. J. Buhring, J. P. Giacobino, L. Lazzari, J. Huard, and B. Peault, "A perivascular origin for mesenchymal stem cells in multiple human organs," Cell Stem Cell, vol. 3, pp. 301-13, Sep 11 2008.
[8] K. Takahashi and S. Yamanaka, "Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors," Cell, vol. 126, pp. 663-76, Aug 25 2006.
[9] S. Kern, H. Eichler, J. Stoeve, H. Kluter, and K. Bieback, "Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue," Stem Cells, vol. 24, pp. 1294-1301, May 2006.
[10] H. Mayani and P. M. Lansdorp, "Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells," Stem Cells, vol. 16, pp. 153-65, 1998.
[11] P. A. Zuk, M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz, and M. H. Hedrick, "Multilineage cells from human adipose tissue: Implications for cell-based therapies," Tissue Engineering, vol. 7, pp. 211-228, Apr 2001.
[12] P. A. Zuk, M. Zhu, P. Ashjian, D. A. De Ugarte, J. I. Huang, H. Mizuno, Z. C. Alfonso, J. K. Fraser, P. Benhaim, and M. H. Hedrick, "Human adipose tissue is a source of multipotent stem cells," Mol Biol Cell, vol. 13, pp. 4279-95, Dec 2002.
[13] A. van Dijk, H. W. Niessen, B. Zandieh Doulabi, F. C. Visser, and F. J. van Milligen, "Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin," Cell Tissue Res, vol. 334, pp. 457-67, Dec 2008.
[14] A. Schaffler and C. Buchler, "Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies," Stem Cells, vol. 25, pp. 818-27, Apr 2007.
[15] M. J. Oedayrajsingh-Varma, S. M. van Ham, M. Knippenberg, M. N. Helder, J. Klein-Nulend, T. E. Schouten, M. J. Ritt, and F. J. van Milligen, "Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure," Cytotherapy, vol. 8, pp. 166-77, 2006.
[16] J. B. Mitchell, K. McIntosh, S. Zvonic, S. Garrett, Z. E. Floyd, A. Kloster, Y. Di Halvorsen, R. W. Storms, B. Goh, G. Kilroy, X. Wu, and J. M. Gimble, "Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers," Stem Cells, vol. 24, pp. 376-85, Feb 2006.
[17] L. E. Zaragosi, G. Ailhaud, and C. Dani, "Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells," Stem Cells, vol. 24, pp. 2412-9, Nov 2006.
[18] D. Rubio, J. Garcia-Castro, M. C. Martin, R. de la Fuente, J. C. Cigudosa, A. C. Lloyd, and A. Bernad, "Spontaneous human adult stem cell transformation," Cancer Research, vol. 65, pp. 3035-9, Apr 15 2005.
[19] L. Zimmerlin, V. S. Donnenberg, M. E. Pfeifer, E. M. Meyer, B. Peault, J. P. Rubin, and A. D. Donnenberg, "Stromal vascular progenitors in adult human adipose tissue," Cytometry A, vol. 77, pp. 22-30, Jan 2010.
[20] K. Yoshimura, T. Shigeura, D. Matsumoto, T. Sato, Y. Takaki, E. Aiba-Kojima, K. Sato, K. Inoue, T. Nagase, I. Koshima, and K. Gonda, "Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates," Journal of Cellular Physiology, vol. 208, pp. 64-76, Jul 2006.
[21] C. I. Civin, L. C. Strauss, C. Brovall, M. J. Fackler, J. F. Schwartz, and J. H. Shaper, "Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells," Journal of Immunology, vol. 133, pp. 157-65, Jul 1984.
[22] T. Asahara, T. Murohara, A. Sullivan, M. Silver, R. van der Zee, T. Li, B. Witzenbichler, G. Schatteman, and J. M. Isner, "Isolation of putative progenitor endothelial cells for angiogenesis," Science, vol. 275, pp. 964-7, Feb 14 1997.
[23] M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak, "Multilineage potential of adult human mesenchymal stem cells," Science, vol. 284, pp. 143-7, Apr 2 1999.
[24] M. P. Pusztaszeri, W. Seelentag, and F. T. Bosman, "Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues," J Histochem Cytochem, vol. 54, pp. 385-95, Apr 2006.
[25] G. Lin, M. Garcia, H. Ning, L. Banie, Y. L. Guo, T. F. Lue, and C. S. Lin, "Defining Stem and Progenitor Cells within Adipose Tissue," Stem Cells Dev, vol. 17, pp. 1053-1063, Dec 2008.
[26] D. O. Traktuev, S. Merfeld-Clauss, J. Li, M. Kolonin, W. Arap, R. Pasqualini, B. H. Johnstone, and K. L. March, "A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks," Circulation Research, vol. 102, pp. 77-85, Jan 4 2008.
[27] A. C. Zannettino, S. Paton, A. Arthur, F. Khor, S. Itescu, J. M. Gimble, and S. Gronthos, "Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo," Journal of Cellular Physiology, vol. 214, pp. 413-21, Feb 2008.
[28] C. Sengenes, K. Lolmede, A. Zakaroff-Girard, R. Busse, and A. Bouloumie, "Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells," Journal of Cellular Physiology, vol. 205, pp. 114-22, Oct 2005.
[29] I. Pountos, D. Corscadden, P. Emery, and P. V. Giannoudis, "Mesenchymal stem cell tissue engineering: Techniques for isolation, expansion and application," Injury, vol. 38, pp. S23-S33, 2007.
[30] R. A. Musina, E. S. Bekchanova, and G. T. Sukhikh, "Comparison of mesenchymal stem cells obtained from different human tissues," Bulletin of Experimental Biology and Medicine, vol. 139, pp. 504-509, Apr 2005.
[31] W. Wagner, F. Wein, A. Seckinger, M. Frankhauser, U. Wirkner, U. Krause, J. Blake, C. Schwager, V. Eckstein, W. Ansorge, and A. D. Ho, "Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood," Experimental Hematology, vol. 33, pp. 1402-1416, 2005.
[32] R. H. Lee, B. Kim, I. Choi, H. Kim, H. S. Choi, K. Suh, Y. C. Bae, and J. S. Jung, "Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue," Cellular Physiology and Biochemistry, vol. 14, pp. 311-24, 2004.
[33] R. Izadpanah, C. Trygg, B. Patel, C. Kriedt, J. Dufour, J. M. Gimble, and B. A. Bunnell, "Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue," Journal of Cellular Biochemistry, vol. 99, pp. 1285-97, Dec 1 2006.
[34] M. Rodbell, "Metabolism of isolated fat cells. II. The similar effects of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on glucose and amino acid metabolism," Journal of Biological Chemistry, vol. 241, pp. 130-9, Jan 10 1966.
[35] M. Rodbell, "The metabolism of isolated fat cells. IV. Regulation of release of protein by lipolytic hormones and insulin," Journal of Biological Chemistry, vol. 241, pp. 3909-17, Sep 10 1966.
[36] M. Rodbell and A. B. Jones, "Metabolism of isolated fat cells. 3. The similar inhibitory action of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline," Journal of Biological Chemistry, vol. 241, pp. 140-2, Jan 10 1966.
[37] M. Kurita, D. Matsumoto, T. Shigeura, K. Sato, K. Gonda, K. Harii, and K. Yoshimura, "Influences of centrifugation on cells and tissues in liposuction aspirates: optimized centrifugation for lipotransfer and cell isolation," Plastic and Reconstructive Surgery, vol. 121, pp. 1033-41; discussion 1042-3, Mar 2008.
[38] A. Higuchi, Y. Shindo, Y. Gomei, T. Mori, T. Uyama, and A. Umezawa, "Cell separation between mesenchymal progenitor cells through porous polymeric membranes," Journal of Biomedical Materials Research Part B-Applied Biomaterials, vol. 74B, pp. 511-519, Jul 2005.
[39] A. Higuchi and Y. Tsukamoto, "Cell separation of hepatocytes and fibroblasts through surface-modified polyurethane membranes," Journal of Biomedical Materials Research Part A, vol. 71A, pp. 470-479, Dec 1 2004.
[40] A. Higuchi, S. Yamamiya, B. O. Yoon, M. Sakurai, and M. Hara, "Peripheral blood cell separation through surface-modified polyurethane membranes," Journal of Biomedical Materials Research Part A, vol. 68A, pp. 34-42, Jan 1 2004.
[41] A. Higuchi, A. Iizuka, Y. Gomei, T. Miyazaki, M. Sakurai, Y. Matsuoka, and S. H. Natori, "Separation of CD34(+) cells from human peripheral blood through polyurethane foaming membranes," Journal of Biomedical Materials Research Part A, vol. 78A, pp. 491-499, Sep 1 2006.
[42] M. Kida, H. K. M, T. Yamazaki, and A. Ichinose, "Presence of two plasminogen alleles in normal populations," Thromb Haemost, vol. 79, pp. 150-4, Jan 1998.
[43] M. Yasutake, M. Sumita, S. Terashima, Y. Tokushima, Y. Nitadori, and T. A. Takahashi, "Stem cell collection filter system for human placental/umbilical cord blood processing," Vox Sanguinis, vol. 80, pp. 101-105, Feb 2001.
[44] M. Muller-Steinhardt, H. Hennig, H. Kirchner, and P. Schlenke, "Prestorage WBC filtration of RBC units with soft-shell filters: filtration performance and impact on RBCs during storage for 42 days," Transfusion, vol. 42, pp. 153-158, Feb 2002.
[45] A. Higuchi, S. T. Yang, P. T. Li, H. Chen, R. C. Ruaan, W. Y. Chen, Y. Chang, Y. Chang, E. M. Tsai, Q. D. Ling, H. C. Wang, and S. T. Hsu, "Separation of Hematopoietic Stem and Progenitor Cells from Human Peripheral Blood Through Polyurethane Foaming Membranes Modified with Several Amino Acids," Journal of Applied Polymer Science, vol. 114, pp. 671-679, Oct 15 2009.
[46] A. Higuchi, C.-W. Chuang, Q.-D. Ling, S.-C. Huang, L.-M. Wang, H. Chen, Y. Chang, H.-C. Wang, J.-T. Bing, Y. Chang, and S.-T. Hsu, "Differentiation ability of adipose-derived stem cells separated from adipose tissue by a membrane filtration method," Journal of Membrane Science, vol. 366, pp. 286-294, 2011.
[47] D. Ishimura, N. Yamamoto, K. Tajima, A. Ohno, Y. Yamamoto, O. Washimi, and H. Yamada, "Differentiation of Adipose-derived Stromal Vascular Fraction Culture Cells into Chondrocytes Using the Method of Cell Sorting with a Mesenchymal Stem Cell Marker," Tohoku Journal of Experimental Medicine, vol. 216, pp. 149-156, Oct 2008.
[48] D. Cizkova, M. Cizek, M. Nagyova, L. Slovinska, I. Novotna, S. Jergova, J. Radonak, J. Hlucilova, and I. Vanicky, "Enrichment of rat oligodendrocyte progenitor cells by magnetic cell sorting," Journal of Neuroscience Methods, vol. 184, pp. 88-94, Oct 30 2009.
[49] T. Barberi, M. Bradbury, Z. Dincer, G. Panagiotakos, N. D. Socci, and L. Studer, "Derivation of engraftable skeletal myoblasts from human embryonic stem cells," Nature Medicine, vol. 13, pp. 642-8, May 2007.
[50] L. Ricci-Vitiani, D. G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro, C. Peschle, and R. De Maria, "Identification and expansion of human colon-cancer-initiating cells," Nature, vol. 445, pp. 111-5, Jan 4 2007.
[51] R. McBeath, D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen, "Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment," Dev Cell, vol. 6, pp. 483-95, Apr 2004.
[52] D. A. Rider, C. Dombrowski, A. A. Sawyer, G. H. Ng, D. Leong, D. W. Hutmacher, V. Nurcombe, and S. M. Cool, "Autocrine fibroblast growth factor 2 increases the multipotentiality of human adipose-derived mesenchymal stem cells," Stem Cells, vol. 26, pp. 1598-608, Jun 2008.
[53] T. Mochizuki, T. Muneta, Y. Sakaguchi, A. Nimura, A. Yokoyama, H. Koga, and I. Sekiya, "Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans," Arthritis Rheum, vol. 54, pp. 843-53, Mar 2006.
[54] G. S. Stein, J. B. Lian, J. L. Stein, A. J. Van Wijnen, and M. Montecino, "Transcriptional control of osteoblast growth and differentiation," Physiological Reviews, vol. 76, pp. 593-629, Apr 1996.
[55] I. Martin, V. P. Shastri, R. F. Padera, J. Yang, A. J. Mackay, R. Langer, G. Vunjak-Novakovic, and L. E. Freed, "Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams," J Biomed Mater Res, vol. 55, pp. 229-35, May 2001.
[56] U. Noth, L. Rackwitz, A. Heymer, M. Weber, B. Baumann, A. Steinert, N. Schutze, F. Jakob, and J. Eulert, "Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels," Journal of Biomedical Materials Research Part A, vol. 83, pp. 626-35, Dec 1 2007.
[57] J. H. Hong, E. S. Hwang, M. T. McManus, A. Amsterdam, Y. Tian, R. Kalmukova, E. Mueller, T. Benjamin, B. M. Spiegelman, P. A. Sharp, N. Hopkins, and M. B. Yaffe, "TAZ, a transcriptional modulator of mesenchymal stem cell differentiation," Science, vol. 309, pp. 1074-8, Aug 12 2005.
[58] J. H. Hong and M. B. Yaffe, "TAZ - A beta-catenin-like molecule that regulates mesenchymal stem cell differentiation," Cell Cycle, vol. 5, pp. 176-179, Jan 16 2006.
[59] J. B. Lian, G. S. Stein, A. Javed, A. J. van Wijnen, J. L. Stein, M. Montecino, M. Q. Hassan, T. Gaur, C. J. Lengner, and D. W. Young, "Networks and hubs for the transcriptional control of osteoblastogenesis," Rev Endocr Metab Disord, vol. 7, pp. 1-16, Jun 2006.
[60] B. T. Estes, A. W. Wu, and F. Guilak, "Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6," Arthritis Rheum, vol. 54, pp. 1222-32, Apr 2006.
[61] A. Nishihara, M. Fujii, T. K. Sampath, K. Miyazono, and A. H. Reddi, "Bone morphogenetic protein signaling in articular chondrocyte differentiation," Biochem Biophys Res Commun, vol. 301, pp. 617-22, Feb 7 2003.
[62] J. Klein-Nulend, R. T. Louwerse, I. C. Heyligers, P. I. Wuisman, C. M. Semeins, S. W. Goei, and E. H. Burger, "Osteogenic protein (OP-1, BMP-7) stimulates cartilage differentiation of human and goat perichondrium tissue in vitro," J Biomed Mater Res, vol. 40, pp. 614-20, Jun 15 1998.
[63] R. H. Li and J. M. Wozney, "Delivering on the promise of bone morphogenetic proteins," Trends Biotechnol, vol. 19, pp. 255-65, Jul 2001.
[64] J. L. Dragoo, J. Y. Choi, J. R. Lieberman, J. Huang, P. A. Zuk, J. Zhang, M. H. Hedrick, and P. Benhaim, "Bone induction by BMP-2 transduced stem cells derived from human fat," Journal of Orthopaedic Research, vol. 21, pp. 622-9, Jul 2003.
[65] M. Knippenberg, M. N. Helder, B. Zandieh Doulabi, P. I. Wuisman, and J. Klein-Nulend, "Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells," Biochem Biophys Res Commun, vol. 342, pp. 902-8, Apr 14 2006.
[66] V. Planat-Benard, C. Menard, M. Andre, M. Puceat, A. Perez, J. M. Garcia-Verdugo, L. Penicaud, and L. Casteilla, "Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells," Circulation Research, vol. 94, pp. 223-9, Feb 6 2004.
[67] Y. Miyahara, N. Nagaya, M. Kataoka, B. Yanagawa, K. Tanaka, H. Hao, K. Ishino, H. Ishida, T. Shimizu, K. Kangawa, S. Sano, T. Okano, S. Kitamura, and H. Mori, "Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction," Nature Medicine, vol. 12, pp. 459-65, Apr 2006.
[68] B. M. Strem, M. Zhu, Z. Alfonso, E. J. Daniels, R. Schreiber, R. Beygui, W. R. MacLellan, M. H. Hedrick, and J. K. Fraser, "Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury," Cytotherapy, vol. 7, pp. 282-91, 2005.
[69] A. M. Rodriguez, D. Pisani, C. A. Dechesne, C. Turc-Carel, J. Y. Kurzenne, B. Wdziekonski, A. Villageois, C. Bagnis, J. P. Breittmayer, H. Groux, G. Ailhaud, and C. Dani, "Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse," J Exp Med, vol. 201, pp. 1397-405, May 2 2005.
[70] L. S. Sefcik, R. A. Neal, S. N. Kaszuba, A. M. Parker, A. J. Katz, R. C. Ogle, and E. A. Botchwey, "Collagen nanofibres are a biomimetic substrate for the serum-free osteogenic differentiation of human adipose stem cells," J Tissue Eng Regen Med, vol. 2, pp. 210-20, Jun 2008.
[71] B. M. PP, A. J. Pedro, A. Peterbauer, C. Gabriel, H. Redl, and R. L. Reis, "Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells," J Mater Sci Mater Med, vol. 16, pp. 1077-85, Dec 2005.
[72] A. Higuchi, Q.-D. Ling, S.-T. Hsu, and A. Umezawa, "Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation," Chemical review, in press.
[73] A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, "Matrix elasticity directs stem cell lineage specification," Cell, vol. 126, pp. 677-89, Aug 25 2006.
[74] D. F. Ward, Jr., R. M. Salasznyk, R. F. Klees, J. Backiel, P. Agius, K. Bennett, A. Boskey, and G. E. Plopper, "Mechanical strain enhances extracellular matrix-induced gene focusing and promotes osteogenic differentiation of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway," Stem Cells Dev, vol. 16, pp. 467-80, Jun 2007.
[75] M. Zscharnack, C. Poesel, J. Galle, and A. Bader, "Low oxygen expansion improves subsequent chondrogenesis of ovine bone-marrow-derived mesenchymal stem cells in collagen type I hydrogel," Cells Tissues Organs, vol. 190, pp. 81-93, 2009.
[76] J. C. Adams and F. M. Watt, "Regulation of development and differentiation by the extracellular matrix," Development, vol. 117, pp. 1183-98, Apr 1993.
[77] P. C. Schiller, G. D’’ippolito, W. Balkan, B. A. Roos, and G. A. Howard, "Gap-junctional communication is required for the maturation process of osteoblastic cells in culture," Bone, vol. 28, pp. 362-369, Apr 2001.
[78] G. A. Di Lullo, S. M. Sweeney, J. Korkko, L. Ala-Kokko, and J. D. San Antonio, "Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen," Journal of Biological Chemistry, vol. 277, pp. 4223-31, Feb 8 2002.
[79] H. Hosseinkhani, Y. Inatsugu, Y. Hiraoka, S. Inoue, and Y. Tabata, "Perfusion culture enhances osteogenic differentiation of rat mesenchymal stem cells in collagen sponge reinforced with poly(glycolic Acid) fiber," Tissue Engineering, vol. 11, pp. 1476-88, Sep-Oct 2005.
[80] Y. R. V. Shih, C. N. Chen, S. W. Tsai, Y. J. Wang, and O. K. Lee, "Growth of mesenchymal stem cells on electrospun type I collagen nanofibers," Stem Cells, vol. 24, pp. 2391-2397, Nov 2006.
[81] L. S. Sefcik, R. A. Neal, S. N. Kaszuba, A. M. Parker, A. J. Katz, R. C. Ogle, and E. A. Botchwey, "Collagen nanofibres are a biomimetic substrate for the serum-free osteogenic differentiation of human adipose stem cells," Journal of Tissue Engineering and Regenerative Medicine, vol. 2, pp. 210-220, Jun 2008.
[82] R. Pankov and K. M. Yamada, "Fibronectin at a glance," Journal of Cell Science, vol. 115, pp. 3861-3863, Oct 15 2002.
[83] Y. Mao and J. E. Schwarzbauer, "Fibronectin fibrillogenesis, a cell-mediated matrix assembly process," Matrix Biology, vol. 24, pp. 389-399, Sep 2005.
[84] I. S. Park, M. Han, J. W. Rhie, S. H. Kim, Y. Jung, I. H. Kim, and S. H. Kim, "The correlation between human adipose-derived stem cells differentiation and cell adhesion mechanism," Biomaterials, vol. 30, pp. 6835-6843, Dec 2009.
[85] K. J. Manton, D. F. M. Leong, S. M. Cool, and V. Nurcombe, "Disruption of heparan and chondroitin sulfate signaling enhances mesenchymal stem cell-derived osteogenic differentiation via bone morphogenetic protein signaling pathways," Stem Cells, vol. 25, pp. 2845-2854, Nov 2007.
[86] R. McBeath, D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen, "Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment," Dev Cell, vol. 6, pp. 483-495, Apr 2004.
[87] M. G. Ormerod, "Flow cytometry: A practical approach, 3rd Edition.," Oxford Unversity Press, 2000.
[88] J. Watson., " Introduction to flow cytometry, First paperback edition.," Cambridge University Press, 2004.
[89] K. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn, and H. Erlich, "Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction," Cold Spring Harb Symp Quant Biol, vol. 51 Pt 1, pp. 263-73, 1986.
[90] K. B. Mullis, "The Polymerase Chain-Reaction (Nobel Lecture)," Angewandte Chemie-International Edition in English, vol. 33, pp. 1209-1213, Jun 6 1994.
[91] J. M. Bartlett and D. Stirling, "A short history of the polymerase chain reaction," Methods Mol Biol, vol. 226, pp. 3-6, 2003.
[92] A. R. Pavlov, N. V. Pavlova, S. A. Kozyavkin, and A. I. Slesarev, "Recent developments in the optimization of thermostable DNA polymerases for efficient applications," Trends Biotechnol, vol. 22, pp. 253-60, May 2004.
[93] W. Rychlik, W. J. Spencer, and R. E. Rhoads, "Optimization of the annealing temperature for DNA amplification in vitro," Nucleic Acids Res, vol. 18, pp. 6409-12, Nov 11 1990.
[94] R. Thweatt, S. Goldstein, and R. J. S. Reis, "A Universal Primer Mixture for Sequence Determination at the 3’’ Ends of Cdnas," Analytical Biochemistry, vol. 190, pp. 314-316, Nov 1 1990.
[95] S. A. Krawetz, R. T. Pon, and G. H. Dixon, "Increased efficiency of the Taq polymerase catalyzed polymerase chain reaction," Nucleic Acids Res, vol. 17, p. 819, Jan 25 1989.
[96] G. Sarkar, S. Kapelner, and S. S. Sommer, "Formamide Can Dramatically Improve the Specificity of Pcr," Nucleic Acids Res, vol. 18, pp. 7465-7465, Dec 25 1990.
[97] D. Y. Wu, L. Ugozzoli, B. K. Pal, J. Qian, and R. B. Wallace, "The Effect of Temperature and Oligonucleotide Primer Length on the Specificity and Efficiency of Amplification by the Polymerase Chain-Reaction," DNA and Cell Biology, vol. 10, pp. 233-238, Apr 1991.
[98] E. P. H. Yap and J. O. Mcgee, "Short Pcr Product Yields Improved by Lower Denaturation Temperatures," Nucleic Acids Res, vol. 19, pp. 1713-1713, Apr 11 1991.
[99] S. Kiyohara, M. Sasaki, K. Saito, K. Sugita, and T. Sugo, "Radiation-induced grafting of phenylalanine-containing monomer onto a porous membrane," Reactive & Functional Polymers, vol. 31, pp. 103-110, Sep 1996.
[100] H. Suga, D. Matsumoto, H. Eto, K. Inoue, N. Aoi, H. Kato, J. Araki, and K. Yoshimura, "Functional implications of CD34 expression in human adipose-derived stem/progenitor cells," Stem Cells Dev, vol. 18, pp. 1201-10, Oct 2009.
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2012-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明