博碩士論文 993204061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.138.116.17
姓名 羅立晨(Li-Chen Lo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 熱電材料與擴散阻障層在電流影響下的界面反應研究
(Interfacial Reaction between Diffusion Barrier and Thermoelectric Materials under Current)
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試
★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究★ 高可靠度車用印刷電路板之表面處理層開發
★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究
★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析★ 電遷移對純錫導線晶粒旋轉之研究
★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究★ 鋁鍺薄膜封裝研究
★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長
★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究
★ 無鉛銲料與碲化鉍基材之界面反應研究★ 高摻雜之二氧化錫薄膜能隙窄化現象及氧化銦薄膜之應力量測與探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要討論熱電材料n-Bi2Te3與擴散阻障層無電鍍鎳磷在電流影響下之界面反應。以自製三明治結構Sn/Ni-P/n-Bi2Te3/Ni-P/Sn模擬商用熱電模組通入電流後之界面反應,無電鍍Ni-P用以防止SnTe IMC快速生成於界面處,我們將觀察擴散阻障層的消耗及介金屬化合物(IMC)的生成,這些IMC將會影響熱電模組的機械性質與電性並可能降低熱電模組的可靠度。
首先以不同電流密度和不同基板加熱溫度繪出熱電模組失效表格,並以此表格為依據,設定電流密度100 A/cm2 加熱溫度150 °C為實驗條件進一步觀察通電時間0、50、100、150小時各階段界面形貌,又加入純退火150 °C以釐清電遷移對系統之影響。擴散阻障層Ni-P在150小時通電過後相變化成Ni3P並產生許多柱狀Kirkendall void,Ni-P/n-Bi2Te3界面經過退火和通電後都生成了NiTe和Bi4Te5 IMC,被電遷移所推動之陰、陽極處Ni原子與Te原子反應生成NiTe IMC,Ni-P/n-Bi2Te3界面處的Te被消耗使得Bi2Te3裡Bi與Te兩元素比例改變,因此結構重組成Bi4Te5。電子流幫助了Ni擴散進入n-Bi2Te3,通電後陰極處之NiTe和Bi4Te5 IMC都比陽極厚,原因是電子流推動Ni原子從陰極往陽極方向,在此系統中陰陽極厚度差異是來自於電遷移的影響。
摘要(英) This research investigated the interfacial reaction between the diffusion barrier, Ni, and the thermoelectric materials. Ni is a good barrier between Pb-free solder and n-type bismuth telluride (Bi2Te2.7Se0.3) thermoelectric material to prevent the rapid formation of brittle SnTe intermetallic compound (IMC). We use sandwich structure Sn/Ni-P/n-Bi2Te3/Ni-P/Sn to simulate the interfacial reaction under current. The depletion of diffusion barrier and the formation of intermetallic compound (IMC) will be concerned. Different current densities were applied to the system to investigate the electromigration behavior of the systems at various temperatures. The experiment condition was set at current density 100 A/cm2 and heating temperature 150 °C. The results showed that the Ni-P layer crystallized to Ni3P and left lots of Kirkendall void after current stressing. Instead of SnTe, NiTe and Bi4Te5 formed at the interfaces. These IMCs would affect the mechanical and electrical properties of the thermoelectric module.
The aging sample at temperature 150 °C is prepared to determine the effect from electromigration. The results showed that the thickness of NiTe and Bi4Te5 at the cathode were thicker than at the anode. Due to the electromigration, Ni atoms diffused into thermoelectric material greatly. The Ni atoms diffused from cathode to anode driven by electrical current.
關鍵字(中) ★ 無鉛銲料
★ 擴散阻障層
★ 電遷移
關鍵字(英) ★ diffusion barrier
★ electromigration
★ lead-free solder
論文目次 中文摘要 I
Abstract II
目錄 ... IV
圖目錄 VI
表目錄 VIII
第一章 序論 1
1-1 前言 1
1-2 熱電材料的發展與應用 1
1-3 熱電優值 3
1-4 熱電模組 4
1-4-1 碲化鉍系熱電材料 5
1-4-2 無鉛銲料與介金屬化合物 5
1-4-3 金屬導線 6
1-4-4 陶瓷基板 6
第二章 相關理論與文獻回顧 7
2-1反應偶與擴散阻障層 7
2-1-1 Sn/Te反應偶 7
2-1-2 Sn-Ag/Te反應偶 8
2-1-3 Sn-Cu/Te反應偶 8
2-1-4 Sn-Bi/Te反應偶 9
2-1-5 Sn-Sb/Te反應偶 10
2-1-6 擴散阻障層與熱電材料 10
2-2 無電鍍鎳 11
2-2-1 鎳與熱電材料 11
2-2-2 無電鍍鎳原理及結構 14
2-2-3 無電鍍鎳的微結構 15
2-3 電遷移現象 16
2-4 (Bi2)m(Bi2Te3)n結構 20
2-5 研究目的 21
第三章 實驗方法 24
3-1材料製備 24
3-1-1 熱電材料 24
3-1-2 無鉛銲料 24
3-2 無電鍍鎳 25
3-3 通電試片 25
3-4 通電試片微小化 26
3-5 試片分析 27
3-5-1 掃描式電子顯微鏡(SEM) 27
3-5-2 X光繞射儀(XRD) 28
3-5-3 電子微探儀(EPMA) 28
第四章 實驗結果與討論 30
4.1 失效模式 30
4-2 界面反應 36
4-2-1通電試片在150 oC之界面反應 36
4-2-2退火試片在150 oC之界面反應 36
4-2-3通電試片在180 oC之界面反應 38
4-2-4退火試片在180 oC之界面反應 38
4-3 通電前後化合物分析與鑑定 40
4-3-1通電前Ni3Sn4、Ni-P、Ni3Te2分析與鑑定 41
4-3-2通電後Ni3Sn4、Ni3P、Ni3Te2、NiTe、Bi4Te5分析與鑑定 42
4-3-2 Ni3Te2、NiTe和Bi4Te5形成原因 45
4-4 電遷移之影響 49
4-4-1 Ni3Sn4的厚度變化 50
4-4-2 Ni-P的消耗與Ni3P的形成 50
4-4-3 NiTe與Bi4Te5於不同電流密度、溫度之生長比較 52
4-4-4 陰陽極之電遷移效應 55
4-4擴散通量與DZ* 56
第五章 結論 59
參考文獻 61

圖目錄
圖1-1 p型與n型熱電材料在各種溫度下之ZT值 4
圖1-2 (a)熱電致冷器(b)熱電發電器 4
圖1-3碲化鉍結構示意圖,顏色較深為Bi原子,較淺為Te原子 5
圖2-1 Sn/Te反應偶在250 oC反應60 分鐘 7
圖2-2 SnTe介金屬化合物在(1)Sn/Te和(2)Sn-3.5Ag/Te於250 oC下厚度對時
間………………………………………………………………………………………8
圖2-3不同成分銲料與Te基材於250 oC反應30 分鐘 (a)Sn/Te (b)Sn-0.1Cu/Te
(c)Sn-0.1Cu/Te界面放大 9
圖2-4不同Sn-Bi組成對SnTe厚度之影響在250 oC反應30 分鐘 10
圖2-5 Ni/p-Bi2Te3界面做EDS分析 11
圖2-6 Ni/n-Bi2Te3界面做EDS分析 11
圖2-7 Ni/n-Bi2Te3之TEM截面圖和XRD鑑定 12
圖2-8 (a)線性掃描 (b)Sn mapping (c)Pb mapping (d)Ni mapping 12
圖2-9 Ni-P相圖 14
圖2-10 SAC305/電鍍Ni-13 wt%P;(a)與(b)兩種對比 14
圖2-11 Ni-P層迴銲數次之TEM橫截面圖 15
圖2-12 Ni-P/Sn3.5Ag/Ni-P電遷移試片 18
圖2-13 Ni3Sn4於(a)160oC (b)180oC之陰陽極厚度 18
圖2-14 Ni-P/Sn3.5Ag/Ni-P電遷移示意圖 18
圖2-15 3x104A/cm2並加熱180oC 之陰陽極IMC厚度變化SEM圖 19
圖2-16示意圖(Bi2)m(Bi2Te3)n有序堆疊,灰色表示Bi2Te3,白色表示Bi2 20
圖2-17 Bi4Te5+Bi2/Bi2Te3相變化成Bi2Te3+Te 21
圖2-18 n型和p型Bi2Te3材料以銲料接合金屬導線 21
圖2-19商用熱電成品之單對p、n-Bi2Te3(a)元件SEM圖 (b)通電下溫度分佈
圖,上端為熱端、下端為冷端較 22
圖2-20 p-Bi2Te3與銲料接面處經過(a)通電700 A/cm2 5小時(b)通電700 A/cm2
15小時(c)退火200oC 5小時(d)退火200oC 15小時 23
圖2-21通電700 A/cm2經過15小時之熱端p-Bi2Te3/Ni/solder界面 23
圖3-1電遷移與退火試片製作流程圖 26
圖4-1 Sn/Ni/n-Bi2Te3/Ni/Sn熱電模組於300 A/cm2 150 °C;500 A/cm2 100 °C
;700 A/cm2 25 °C通電後之電阻變化情況 32
圖4-2 (a)300 A/cm2 150 °C通電後之表面(b)500 A/cm2 100 °C通電後之表面
(c)700 A/cm2 25 °C通電後之表面 33
圖4-3 100 A/cm2 100 °C通電後陰陽極之表面 34
圖4-4 300 A/cm2 100 °C通電後陰陽極之表面 35
圖4-5 500 A/cm2 25 °C通電後陰陽極之表面 35
圖4-6導線於電流密度100 A/cm2 加熱150 °C,分別經過0、50、100、150
小時電遷移陰、陽極界面形貌 37
圖4-7試片加熱150 °C,分別經過0、50、100、150小時界面形貌 38
圖4-8導線於電流密度100 A/cm2 加熱180 °C,分別經過0、50、100、150
小時電遷移陰、陽極界面形貌 39
圖4-9試片加熱180 °C,分別經過0、50、100、150小時界面形貌 40
圖4-10 (a)陰極未通電(b)陽極未通電,與表4-2、4-3對應(c)陰極通電150
小時(d)陽極通電150小時,與表4-4、4-5對應 40
圖4-11通電150小時電遷移XRD圖譜-Ni3Te2,NiTe 44
圖4-12通電150小時電遷移XRD圖譜-Bi4Te5,Ni3Sn4 44
圖4-13通電前Ni-P/n-Bi2Te3界面 47
圖4-14通電後100 A/cm2 150 °C 陰極Ni-P/n-Bi2Te3界面 47
圖4-15通電後100 A/cm2 150 °C 陽極Ni-P/n-Bi2Te3界面 47
圖4-16 Bi-Te二元相圖 48
圖4-17 Ni3Sn4取標準化再平均之厚度對時間關係圖 49
圖4-18 Ni3Sn4在陰極端的析出現象 50
圖4-19試片於100 A/cm2 150 °C和退火150 °C下Ni-P厚度與時間關係圖 51
圖4-20試片於100 A/cm2 150 °C下陰極Ni-P層孔洞 52
圖4-21試片於100 A/cm2 180 °C下陰極Ni-P層孔洞 52
圖4-22試片於100 A/cm2 150 °C和退火150 °C下NiTe厚度與時間關係圖 53
圖4-23試片於100 A/cm2 150 °C和退火150 °C下Bi4Te5厚度與時間關係圖 54
圖4-24試片於四種條件下Bi4Te5的形貌,(c)(d)為陰極端 54
圖4-25 Ni-P/n-Bi2Te3/Ni-P電遷移對NiTe影響示意圖 55
表目錄
表4-1 n-Bi2Te3熱電模組失效表 30
表4-2熱電模組室溫下通不同電流密度之冷熱端溫度分布 33
表4-3 Sn/Ni-P界面通電前EPMA分析結果 41
表4-4 Ni-P/n-Bi2Te3 界面通電前EPMA分析結果 41
表4-5 Sn/Ni-P界面通電150小時EPMA分析結果 42
表4-6 Ni-P/n-Bi2Te3 界面通電150小時EPMA分析結果 43
表4-7 (Bi2)m(Bi2Te3)n之組合成各種比例的BixTey化合物 48
表4-8計算number of diffused atoms所需參數 57
表4-9計算DZ*所需參數 57
表4-10 DZ*值之比較
參考文獻 1. J. P. Heremans, C. M. Thrush, D. T. Morelli, and M. C. Wu , “Thermoelectric Power of Bismuth Nanocomposites” , Phys. Rev. Lett. 88, 21, 216801 (2002)
2. R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O’’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit”, Nature, 413, 6856, 597-602 (2001)
3. T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. LaForge, “Quantum Dot Superlattice Thermoelectric Materials and Devices”, Science, 297, 5590, 2229-2232 (2002)
4. R. Venkatasubramanian and T. Colpitts, “Enhancement in Figure-Of-Merit with Superlattice Structures for Thin-Film Thermoelectric Devices”, MRS Proceedings, 478, 73 (1997)
5. J. W. G. Bos, H. W. Zandbergen, M. H. Lee, N. P. Ong, and R. J. Cava, “Structures and thermoelectric properties of the infinitely adaptive series (Bi2)m(Bi2Te3)n”, Phys. Rev. B 75, 195203 (2007)
6. T. M. Tritt and M. A. Subramanian, “Thermoelectric Materials, Phenomena, and Applications: A Bird’’s Eye View”, Guest Editors, MRS Bulletin, 31, 188-198 (2006)
7. S. W. Chen and C. N. Chiu, “Unusual cruciform pattern interfacial reactions in Sn/Te couples”, Scr. Mater. ,56, 97–99 (2007)
8. C. N. Liao and Y. C. Huang, “Effect of Ag addition in Sn on growth of SnTe compound during reaction between molten solder and tellurium”, J. Mater. Res. 25, 391-395 (2010)
9. C. N. Liao and C. H. Lee, “Suppression of vigorous liquid Sn/Te reactions by Sn–Cu solder alloys”, J. Mater. Res., 23, 12 ,3303-3308 (2008)
10. C. N. Chiu, C. H. Wang and S. W. Chen, “Interfacial Reactions in the Sn-Bi/Te Couples”, J. Electron. Mater. , 37, 1, 40-44 (2008)
11. C. H. Lee, W. T. Chen and C. N. Liao, “Effect of antimony on vigorous interfacial reaction of Sn–Sb/Te couples”, J. Alloys Compd. , 509, 5142-5146 (2011)
12. Y. C. Lan, D. Z. Wang, G. Chen, and Z. F. Ren, “Diffusion of nickel and tin in p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials”, Appl. Phys. Lett. , 92, 101910 (2008)
13. O. D. Iyore, T. H. Lee, R. P. Gupta, J. B. White, H. N. Alshareef, M. J. Kim and B.E. Gnade, “Interfacial characterization of nickel contacts to bulk bismuth tellurium selenide”, Surf. Interface Anal. , 41, 440-444 (2009)
14. R. P. Grupta, O. D. Iyore, K. Xiong, J. B. White, K. Cho, H. N. Alshareef, and B. E. Gnade, “Interface Characterization of Cobalt Contacts on Bismuth Selenium Telluride for Thermoelectric Devices”, Electrochem. Solid-State Lett. , 12, 10. 395-397 (2009)
15. H. Wada, K. Takahashi and T. Nishizaka, “Electroless nickel plating to Bi-Te sintered alloy and its properties”, J. Mater. Sci. Lett. , 9, 7, 810-812 (1990)
16. T. Y. Lin, C. N. Liao, Albert T. Wu, “Evaluation of Diffusion Barrier Between Lead-Free Solder Systems and Thermoelectric Materials”, J. Electron. Mater. , 41, 1 (2012)
17. 楊聰仁, “無電鍍之介紹 ”, 逢甲大學材料科技, 3, 9-19 (1984)
18. R. N. Duncan, “The metallurgical structure of electroless nickel deposits: effect of coating properties”, Plat. Surf. Finish 83, 11, 65-69 (1996)
19. G. O. Mallory and J. B. Hajdu, “Electroless plating: Fundamentals and Applications ”, AESF, Orlando, Florida, Chapter1 (2008)
20. L. F. Spencer, “Electroless nickel plating - A Review”, Met. Finishing, 72, 12, 58-64 (1974)
21. H. Li, W. Wang, and H. Chen, “surface morphology and electronic state characterization of Ni-P amorphous alloy films”, J. Non-Cryst. Solids, 281, 31-38 (2001)
22. X. Haowen and Z. Bangwei, “wettability of amorphous electroless nickel porous –based deposits”, Met. Finishing, 99, 1, 40-48 (2001)
23. X. Haowen and Z. Bangwei, “autocatalytic deposition of nickel tin copper phosphorous amorphous alloys”, Met. Finishing, 97, 10, 35-41 (1999)
24. Y. C. Lin, J. G. Duh, “Phase transformation of the phosphorus-rich layer in SnAgCu/Ni-P solder joints”, Scr. Mater. , 54, 1661-1665 (2006)
25. H. Li, H. Li, W. L. Dai, W. Wang, Z. Fang, and J. F. Deng, “XPS studies on surface electronic characteristics of Ni–B and Ni–P amorphous alloy and its correlation to their catalytic properties”, Appl. Surf. Sci. , 152, 25-34 (1999)
26. K. Zeng, V. Vuorinen, and J. K. Kivilahti, “Interfacial Reactions Between Lead-Free SnAgCu Solder and Ni(P) Surface Finish on Printed Circuit Boards” IEEE trans. Electron. Packag. Manuf. , 25, 3, 162-167 (1999)
27. H. Gan, K. N. Tu, “Polarity effect of electromigration on kinetics of intermetallic compound formation in Pb-free solder V-groove samples” J. Appl. Phys. , 97, 063514 (2005)
28. K. N. Tu, J. W. Mayer, and L. C. Feldman, “Electronic Thin Film Science for Electrical Engineering and Materials Scientists”, Maxwell Macmillan, New York (1992)
29. A. Kumar, M. Hea, Z. Chen, and P. S. Teo, “Effect of electromigration on interfacial reactions between Ni-P and Sn3.5%Ag solder”, Thin Solid Films, 462, 413– 418 (2004)
30. R. Rostek, V. Sklyarenko, and P. Woias, “Influence of vapor annealing on the thermoelectric properties of electrodeposited Bi2Te3”, J. Mater. Res., 26, 15, 1785-1790 (2011)
31. C. N. Liao, W. T. Chen, and C. H. Lee, “Polarity effect on interfacial reactions at soldered junctions of electrically stressed thermoelectric modules”, Appl. Phys. Lett. , 97, 241906 (2010)
32. 曾偉志, 多層組內連線中的電遷移及應力遷移現象, 電子月刊, 2, 80 (1996)
33. C. W. Tai,Effect of electric current stressing on interfacial reactions at soldered junctions of thermoelectric modules, 博士論文 (2011)
34. S. W. Chen, C. M. Chen, and W. C. Liu, “Electric current effect upon the Sn/Cu and Sn/Ni interfacial reaction”, J. Electron. Mater. , 27, 11, 1193-1199 (1998)
35. C. M. Chen, S. W. Chen, “Electric effect upon the Sn/Ag and Sn/Ni interfacial reactions at various temperatures”, Acta Mater. , 50, 9, 2461-2469 (2002)
36. Z. Chen, M. He, and G. Qi, “Morphology and kinetic study of the interfacial reaction between the Sn-3.5Ag solder and electroless Ni-P metallization”, J. Electron. Mater. , 33, 12, 1465-1472 (2004)
37. C. Y. Lee, K. L. Lin, “The interaction kinetics and compound formation between electroless Ni-P and solder”, Thin Solid Films, 249, 2, 201-206 (1994)
38. J. W. Yoon, C. B. Lee, and S. B. Jung “Growth of an Intermetallic Compound Layer with Sn-3.5Ag-5Bi on Cu and Ni-P/Cu during Aging Treatment”, J. Electron. Mater. , 32, 11, 1195-1202 (2003)
39. W. P. Lin, D. E. Wesolowski, and C. C. Li, “Barrier/binding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules”, J. Mater. Sci. : Mater. Electron., 22, 9, 1313-1320 (2011)
40. Okamoto H., Tanner L.E., "Bi-Te (Bismuth-Tellurium)", Binary Alloy Phase Diagrams, 2nd Ed., Ed. T.B. Massalski, 800–801 (1990)
41. C. Y. Liu, L. Ke, Y. C. Chuang and S. J. Wang, “Study of electromigration -induced Cu consumption in the flip-chip Sn/Cu solder bumps”, J. Appl. Phys. , 100, 083702 (2006)
42. Y. R. Lin, K. W. Pan, H. J. Wu, S. W. Chen, “Interfacial reaction at 250oC in the Sn/Ni-7wt.%V couple”, Microsystems Packaging Assembly and Circuits Technology Conference (IMPACT), 2010 5th International (2010)
43. http://www.americanelements.com/teni.html, American Element
44. B. Chao, S. H. Chae, X. Zhang, K. H. Lu, J. Im and P. S. Ho, “Investigation of diffusion and electromigration parameters for Cu-Sn intermetallic compounds in Pb-free solder using simulated annealing”, Acta. Mater. , 55, 8, 2805-2814 (2007)
45. C. Chen and S. W. Liang, “Electromigration issues in lead-free solder joints”, J. Mater. Sci., 18, 259-268 (2007)
46. A. S. Nowick and J. J. Burton, “Diffusion in Solids: Recent Developments”, J. Mater. Sci., New York, 6, 329 (1976)
47. F. M. d’Heurle, A. Gangulee, C. F. Aliotta and V. A. Ranieri, “Electromigration of Ni in Al thin film conductors”, J. Appl. Phys., 46, 4845-4846 (1975)
48. M. Tsutsui, L. T. Zhang, K. Ito and M. Yamaguchi, “Effect of in-doping on the thermoelectric properties of β-Zn4Sb3”, Intermetallic., 12, 809-813 (2004)
指導教授 吳子嘉(Albert T. Wu) 審核日期 2012-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明