博碩士論文 993204045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.15.2.28
姓名 白謹通(Chin-tung Pai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 製備具再分散性之立方體奈米氧化鋯結晶粒子
(Preparation of dispersible c-ZrO2 nanocrystals)
相關論文
★ MFI沸石奈米結晶製備研究★ 氧化鋅奈米粒子的表面改質與分散
★ 濕法製備氧化鋅摻雜鋁之透明導電膜★ 強吸水性透明奈米沸石膜
★ 奈米氧化鋅透明導電膜的製作★ 製作AZO透明導電膜的各種嘗試
★ 奈米結晶氧化鋯合成與分散★ 接枝PDMS之奈米氧化鋯及其與矽膠複合膜之光學性質
★ 奈米氧化鋯之表面接枝及其與壓克力樹酯複合膜之電泳沉積★ 沸石晶核的製備與排列
★ 納米級氧化鋯結晶粒子之高濃度穩定懸浮液製備★ 聚芳香羧酸酯之合成及性質研究
★ MFI沸石超微粒子之製作★ 四氯化鈦之控制水解研究
★ 具環氧基矽烷包覆奈米粒子之研究★ 具再分散性之奈米級氧化鋯結晶粒子之合成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗的目的是製備出具有均一粒徑且經過改質後可以再分散在溶劑中的立方二氧化鋯奈米結晶粒子,此一製成實驗步驟較為簡單,並已經放大到公斤級,本實驗討論合成過程中的配方、清洗和改質條件所造成的影響。
使用碳酸鋯當作合成奈米氧化鋯的原料,透過調整反應物中二氧化鋯、NaOH和水的比例,控制奈米二氧化鋯粒子的大小,再利用碳酸氫氨水溶液進行離子交換,降低氧化鋯表面上Na離子的含量,經過離子交換後的沉澱物可以添加不同的有機酸進行改質,改質過後的奈米氧化鋯粒子經過乾燥,可以在常溫下以粉體的方式保存,並且分散到不同的有機溶劑中。
在反應物氧化鋯含量22 wt%和 NaOH 22.3 wt%的條件下,以烘箱加熱110 oC加熱6小時,可以得到結晶大小為3.1 nm的立方晶相的奈米氧化鋯粒子,經過丁酸改質過後的粉體分散在甲苯中,配置成氧化鋯固含量50 wt%的分散液,在可見光波長600 nm穿透度82%,DLS的平均粒徑為15.6 nm,粉體密度為2.5 g/cm3,粉體折射率為1.7。
摘要(英) The purpose of this experiment was formatted the dispersible c-ZrO2 nanocrystals with digestion. The organic acid grafted c-ZrO2 nanocrystals can be stabilized in different solvents. This synthesis route is relatively simple and has been developed into large-scale. In this study, we discussed the condition of the reactant, ion exchange and modification of the synthesis process.
We used zirconium basic carbonate as the raw materials for the synthesis of zirconia nanocrystals. We adjusted the reactant ratio of zirconium dioxide, NaOH and water, controlling the particle size of zirconia nanoparticles. After reaction we used ammonium bicarbonate solution to ion exchange, the Na+ on zirconia nanoparticles surface would reduce. This precipitate can be modified with different organic acids and the organic acid grafted ZrO2 can dried into powders. The modified powders can disperse in different solvent.
The particular sample was prepared by the 110oC/6 hours digestion of a mixture having 22.3 wt % ZrO2 equivalent and 22 wt% NaOH. It can obtained the cubic zirconia nanocrystals of 3.1 nm. The dispersion of BA grafted ZrO2 in toluene at 50 wt% had the transparency 82 % at visible wavelength of 600 nm. The average particle size is 15.6 nm from DLS. The density of BA-ZrO2 powder was 2.5 g/cm3 and refractive indexes was 1.7.
關鍵字(中) ★ 氧化鋯
★ 分散
★ 奈米粒子
★ 立方晶體
★ 改質有機酸
關鍵字(英) ★ nanocrystals
★ dispersion
★ modification
★ cubic
★ ZrO2
★ zirconia
論文目次 摘要 I
Abstract II
List of Figures V
List of Tables IX
Chapter1 Introduction 1
1-1 Basic properties of zirconia 2
1-2 Literature review 3
1-3 Motivation 5
Chapter2 Synthesis and modification of ZrO2 nano-crystals 9
2-1 Materials 9
2-2 The preparation of dispersible c-ZrO2 from zirconium carbonate 16
Chapter3 Results and discussions 20
3-1 The control of the grain size 20
3-2 The importance of ion-exchange 26
3-3 The properties of carboxylic acid grafted ZrO2 nanocrystals 38
3-4 The dispersion of organic acid grafted nano-ZrO2 50
Chapter4 Physical properties of grafted ZrO2 65
Chapter5 A different digestion schemes 71
5-1 Direct extraction verses drying/re-dispersion 71
5-2 Different digestion schemes 72
Chapter6 Conclusions 79
Appendix I Instruments and measuring conditions 80
Appendix II Materials 83
參考文獻 Reference
1. Alper, A.M., High Temperature Oxides: Magnesia, alumina, beryllia ceramics: fabrication, characterization, and properties. 1970: Academic Press.
2. Itoh, T., Crystallite growth of ZrO2 powder. Journal of Materials Science Letters, 1985. 4(8): p. 1029-1032.
3. Xu, G., et al., Homogeneous precipitation synthesis and electrical properties of scandia stabilized zirconia. Solid state communications, 2001. 121(1): p. 45-49.
4. Tani, E., M. Yoshimura, and S. SŌMiya, Formation of Ultrafine Tetragonal ZrO2 Powder Under Hydrothermal Conditions. Journal of the American Ceramic Society, 1983. 66(1): p. 11-14.
5. Kolen’’ko, Y.V., et al., Synthesis of ZrO2 and TiO2 nanocrystalline powders by hydrothermal process. Materials Science and Engineering: C, 2003. 23(6–8): p. 1033-1038.
6. Xie, Y., Preparation of Ultrafine Zirconia Particles. Journal of the American Ceramic Society, 1999. 82(3): p. 768-770.
7. Chang, H.L., P. Shady, and W.H. Shih, The effects of containers of precursors on the properties of zirconia powders. Microporous and mesoporous materials, 2003. 59(1): p. 29-34.
8. Nahas, N., et al., On the mechanism of zirconia textural stabilization by siliceous species during digestion under basic conditions. Journal of Catalysis, 2007. 247(1): p. 51-60.
9. Chuah, G.K., et al., The influence of preparation conditions on the surface area of zirconia. Applied Catalysis A: General, 1996. 145(1-2): p. 267-284.
10. Chuah, G., An investigation into the preparation of high surface area zirconia. Catalysis today, 1999. 49(1-3): p. 131-139.
11. Chuah, G. and S. Jaenicke, The preparation of high surface area zirconia--Influence of precipitating agent and digestion. Applied Catalysis A: General, 1997. 163(1-2): p. 261-273.
12. Chuah, G., S. Jaenicke, and T. Xu, Acidity of high surface area zirconia prepared from different precipitants. Surface and interface analysis, 1999. 28(1): p. 131-134.
13. 陳建偉, 高分散性奈米粒子合成及複合材料之制備. 2010.
14. Chen, C.-W., X.-S. Yang, and A.S.T. Chiang, An aqueous process for the production of fully dispersible t-ZrO2 nanocrystals. Journal of the Taiwan Institute of Chemical Engineers, 2009. 40(3): p. 296-301.
15. Clearfield, A., Process for the production of cubic crystalline zirconia. 1967, Google Patents.
16. Gimblett, F.G.R., A. Hussain, and K.S.W. Sing, Thermal and related studies of some basic zirconium salts. Journal of Thermal Analysis and Calorimetry, 1988. 34(4): p. 1001-1013.
17. Del Monte, F., W. Larsen, and J.D. Mackenzie, Chemical interactions promoting the ZrO2 tetragonal stabilization in ZrO2–SiO2 binary oxides. Journal of the American Ceramic Society, 2000. 83(6): p. 1506-1512.
18. Benedetti, A., G. Fagherazzi, and F. Pinna, Preparation and structural characterization of ultrafine zirconia powders. Journal of the American Ceramic Society, 1989. 72(3): p. 467-469.
19. Benedetti, A., et al., Structural properties of ultra-fine zirconia powders obtained by precipitation methods. Journal of Materials Science, 1990. 25(2): p. 1473-1478.
20. Lopez, E., et al., Vibrational and electronic spectroscopic properties of zirconia powders. Journal of Materials Chemistry, 2001. 11(7): p. 1891-1897.
21. Cai, J., et al., Temperature dependence of Raman scattering in stabilized cubic zirconia. Physical Review B, 1995. 51(1): p. 201-209.
22. Lutterotti, L. and P. Scardi, Simultaneous structure and size-strain refinement by the Rietveld method. Journal of Applied Crystallography, 1990. 23(4): p. 246-252.
23. Srinivasan, R., et al., Discrepancies in the crystal structures assigned to precipitated zirconia. Journal of Materials Science Letters, 1991. 10(6): p. 352-354.
24. Fagherazzi, G., et al., Rietveld analysis of the cubic crystal structure of Na-stabilized zirconia. Journal of materials research, 1997. 12(02): p. 318-321.
25. Li, M., et al., Phase transformation in the surface region of zirconia and doped zirconia detected by UV Raman spectroscopy. Physical Chemistry Chemical Physics, 2003. 5(23): p. 5326-5332.
26. Biaglow, A., et al., A 13C NMR Study of the Condensation Chemistry of Acetone and Acetaldehyde Adsorbed at the Bronsted Acid Sites in H-ZSM-5. Journal of Catalysis, 1995. 151(2): p. 373-384.
27. Wang, H., et al., Hydrated surface structure and its impacts on the stabilization of t-ZrO2. Journal of Solid State Chemistry, 2007. 180(10): p. 2790-2797.
28. Pokrovski, K., K.T. Jung, and A.T. Bell, Investigation of CO and CO2 Adsorption on Tetragonal and Monoclinic Zirconia. Langmuir, 2001. 17(14): p. 4297-4303.
29. Dobson, K.D. and A.J. McQuillan, In situ infrared spectroscopic analysis of the adsorption of aliphatic carboxylic acids to TiO2, ZrO2, Al2O3, and Ta2O5 from aqueous solutions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1999. 55(7-8): p. 1395-1405.
30. Nakayama, N. and T. Hayashi, Preparation of TiO2 nanoparticles surface-modified by both carboxylic acid and amine: Dispersibility and stabilization in organic solvents. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2008. 317(1-3): p. 543-550.
31. Wisser, F.M., et al., Detection of surface silanol groups on pristine and functionalized silica mixed oxides and zirconia. Journal of Colloid and Interface Science, 2012.
32. Teas, J.P., Graphic analysis of resin solubilities. Journal of paint technology, 1968. 40(516): p. 19-25.
33. Allan, F.M., Handbook of Solubility Parameters. 1983: p. page 153-157.
34. Beaucage, G., Small-Angle Scattering from Polymeric Mass Fractals of Arbitrary Mass-Fractal Dimension. Journal of Applied Crystallography, 1996. 29(2): p. 134-146.
35. Quemada, D., Rheology of concentrated disperse systems and minimum energy dissipation principle. Rheologica Acta, 1977. 16(1): p. 82-94.
36. Khabashesku, O. and S. Cooper, Synthesis with metal methacrylates as comonomers. 2011, Google Patents.
指導教授 蔣孝澈(Anthony s.t. Chiang) 審核日期 2012-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明