參考文獻 |
[1] G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics 38 (1965) 56-59.
[2] T. Sondergaard and S. I. Bozhevolnyi, “Metal Nano-Strip Optical Resonators,” Opt. Express 15 (2007) 4198-4204.
[3] K. Q. Peng, X. Wang, X. Wu, and S. T. Lee, “Fabrication and Photovoltaic Property of Ordered Macroporous Silicon,” Appl. Phys. Lett. 95 (2009) 143119.
[4] D. M. Newman, M. L. Wears, M. Jollie, and D. Choo, “Fabrication and Characterization of Nano-Particulate PtCo Media for Ultra-High Density Perpendicular Magnetic Recording,” Nanotechnology 18 (2007) 205301-205309.
[5] A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” Chemphyschem 1 (2000) 18-52.
[6] Z. Kang, C. H. A. Tsang, N. B. Wong, Z. Zhang, and S. T. Lee, “Silicon Quantum Dots: A General Photocatalyst for Reduction, Decomposition, and Selective Oxidation Reactions,” J. Am. Chem. Soc. 129 (2007) 12090-12091.
[7] Z. Kang, Y. Liu, C. H. A. Tsang, D. D. D. Ma, X. Fan, N. B. Wong, and S. T. Lee, “Water-Soluble Silicon Quantum Dots with Wavelength-Tunable Photoluminescence,” Adv. Mater. 21 (2009) 661–664.
[8] J. Ramanujam, D. Shiri, and A. Verma, “Silicon Nanowire Growth and Properties: A Review,” Mater. Express 1 (2011) 105-126.
[9] M. Shao, D. D. D. Ma, and S. T. Lee, “Silicon Nanowires – Synthesis, Properties, and Applications,” Eur. J. Inorg. Chem. (2010) 4264–4278.
[10] H. Zeng, Z. Zhang, X. L. Wei, X. B. Wang, Y. Bando, and D. Golberg, “White Graphenes: Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping,” Nano Lett. 10 (2010) 5049–5055.
[11] R. M. Liu, X. F. Zi, Y. P. Kang, M. Z. Si, and Y. C. Wu, “Surface-Enhanced Raman Scattering Study of Human Serum on PVA–Ag Nanofilm Prepared by Using Electrostatic Self-Assembly,” J. Raman Spectrosc. 42 (2011) 137–144.
[12] W. Lur and L. J. Chen, “Growth Kinetics of Amorphous Interlayer Formed by Interdiffusion of Polycrystalline Ti Thin-Film and Single-Crystal Silicon,” Appl. Phys. Lett. 27 (1989) 13 54.
[13] M. T. Björk,J. Knoch, H. Schmid, H. Riel, and W. Riess, “Silicon Nanowire Tunneling Field-Effect Transistors,” Appl. Phys. Lett. 92 (2008) 193504.
[14] K. S. Shin, A. Pan, and C. O. Chui, “Channel Length Dependent Sensitivity of Schottky Contacted Silicon,” Appl. Phys. Lett. 100 (2012) 123504.
[15] K. Kang, H. S. Lee, D. W. Han, G. S. Kim, and D. Lee, “Maximum Li Storage in Si Nanowires for the High Capacity Three-Dimensional Li-ion Battery,” Appl. Phys. Lett. 96 (2010) 053110.
[16] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, “High-Performance Lithium Battery Anodes Using Silicon Nanowires,” Nature nanotechnology Vol. 3 (2008) 31-35.
[17] H. C. Wu, H. Y. Tsai, H. T. Chiu, and C. Y. Lee, “Silicon Rice-Straw Array Emitters and Their Superior Electron Field Emission,” Appl. Mater. Inter. Vol. 2 (2010) No. 11 3285–3288.
[18] Y. F. Tzeng, H. C. Wu, P. S. Sheng, N. H. Tai, H. T. Chiu, C. Y. Lee, and I. N. Lin, “Stacked Silicon Nanowires with Improved Field Enhancement Factor,” Appl. Mater. Inter. Vol. 2 (2010) No. 2 331–334.
[19] H. C. Wu, T. Y. Tsai, F. H. Chu, N. H. Tai, H. N. Lin, H. T. Chiu, and C. Y. Lee, “Electron Field Emission Properties of Nanomaterials on Rough Silicon Rods,” J. Phys. Chem. C 114 (2010) 130–133.
[20] Y. Engel, R. Elnathan, A. Pevzner, G. Davidi, E. Flaxer, and F. Patolsky, “Supersensitive Detection of Explosives by Silicon Nanowire Arrays,” Angew. Chem. Int. Ed. 49 (2010) 6830 –6835.
[21] X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, “Silicon Nanowires as Chemical Sensors,” Chem. Phys. Lett. 369 (2003) 220–224.
[22] K. Q. Peng, X. Wang, and S. T. Lee, “Gas Sensing Properties of Single Crystalline Porous Silicon Nanowires,” Appl. Phys. Lett. 95 (2009) 243112.
[23] J. F. Hsu, B. R. Huang, C. S. Huang, and H. L. Chen, “Silicon Nanowires as pH Sensor,” Jpn. J. Appl. Phys. 44 (2005) 2626–2629.
[24] X. Wang, K. Q. Peng, X. J. Pan, X. Chen, Y. Yang, L. Li, X. M. Meng, W. J. Zhang, and S. T. Lee, “High-Performance Silicon Nanowire Array Photoelectrochemical Solar Cells through Surface Passivation and Modification,” Angew. Chem. Int. Ed. 50 (2011) 9861 –9865.
[25] E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10 (2010) 1082–1087.
[26] W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K. H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. L. Li, “Nonlithographic Patterning and Metal-Assisted Chemical Etching for Manufacturing of Tunable Light-Emitting Silicon Nanowire Arrays,” Nano Lett. 10 (2010) 1582–1588.
[27] K. Peng, X. Wang, and S. T. Lee, “ Silicon Nanowire Array Photoelectrochemical Solar Cells,” Appl. Phys. Lett. 92 (2008) 163103.
[28] R. S. Wanger and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4 (1964) 89-90.
[29] M. Lu, M. K. Li, L. B. Kong, X. Y. Guo, and H. L. Li, “Silicon Quantum-Wires Arrays Synthesized by Chemical Vapor Deposition and its Micro-Structural Properties,” Chem. Phys. Lett. 374 (2003) 542-547.
[30] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism,” Chem. Phys. Lett. 323 (2000) 224-228.
[31] K. J. Wang, K. X. Wang, H. Zhang, G. D. Li, and J. S. Chen, “Self-Oriented Single Crystalline Silicon Nanorod Arrays through a Chemical Vapor Reaction Route,” J. Phys. Chem. C 114 (2010) 2471-2475.
[32] H. Hamidinezhad, Y. Wahab, Z. Othaman, and A. K. Ismail, “Synthesis and Analysis of Silicon Nanowire Below Si–Au Eutectic Temperatures Using Very High Frequency Plasma Enhanced Chemical Vapor Deposition,” Appl. Surf. Sci. 257 (2011) 9188– 9192.
[33] Z. Zhang, X. H. Fan, L. Xu, C. S. Lee, and S. T. Lee, “Morphology and Growth Mechanism Study of Self-Assembled Silicon Nanowires Synthesized by Thermal Evaporation,” Chem. Phys. Lett. 337 (2001) 18-24.
[34] J. Niu, J. Sha, and D. Yang, “Silicon Nano-Wires Fabricated by a Novel Thermal Evaporation of Zinc Sulfide,” Physica E 24 (2004) 178-182.
[35] Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, and Z. L. Wang, “Temperature-Controlled Growth of Silicon-Based Nanostructures by Thermal Evaporation of SiO Powders,” J. Phys. Chem. B 105 (2001) 2507-2514.
[36] Y. H. Tang, Y. F. Zhang, N. Wang, C. S. Lee, and X. D. Han, “Morphology of Si Nanowires Synthesized by High-Temperature Laser Ablation,” J. Appl. Phys. 85 (1999) 7981.
[37] Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee, “Silicon Nanowires Prepared by Laser Ablation at High Temperature,” Appl. Phys. Lett. 72 (1998) 1835.
[38] N. Fukata, S. Matsushita, N. Okada, J. Chen, T. Sekiguchi, N. Uchida, and K. Murakami, “Impurity Doping in Silicon Nanowires Synthesized by Laser Ablation,” Appl Phys A 93 (2008) 589–592.
[39] N. Megouda, R. Douani, T. Hadjersi, and R. Boukherroub, “Formation of Aligned Silicon Nanowire on Silicon by Electroless Etching in HF Solution,” J. Lumin. 129 (2009) 1750–1753.
[40] K. Peng, Y. Yan, S. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Adv. Funct. Mater. 13 (2003) No. 2.
[41] Z. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele, “Extended Arrays of Vertically Aligned Sub-10 nm Diameter [100] Si Nanowires by Metal-Assisted Chemical Etching,” Nano Lett. 8 (2008) 3046-3051.
[42] K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, and S. T. Lee, “Ordered Silicon Nanowire Arrays via Nanosphere Lithography and Metalinduced Etching,” Appl. Phys. Lett. 90 (2007) 163123.
[43] Z. Huang, H. Fang, and J. Zhu, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density,” Adv. Mater. 19 (2007) 744–748.
[44] K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, and S. T. Lee, “Ordered Silicon Nanowire Arrays via Nanosphere Lithography and Metal-Induced Etching,” Appl. Phys. Lett. 90 (2007) 163123.
[45] S. L. Cheng, C.H. Lo, C.F. Chuang, and S.W. Lee, “Site-Controlled Fabrication of Dimension-Tunable Si Nanowire Arrays on Patterned (001) Si Substrates,” Thin Solid Films 520 (2012) 3309–3313.
[46] R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4 (1964) 89.
[47] D. W. F. James, and C. Lewis, “Silicon Whisker Growth and Epitaxy by the Vapor-Liquid-Solid Mechanism,” Br. J. Appl. Phys. 16 (1965) 1089.
[48] B. Kalache, P. R. Cabarrocas, and A. F. Morral, “Observation of Incubation Times in the Nucleation of Silicon Nanowires Obtained by the Vapor–Liquid–Solid Method,” Jpn. J. Appl. Phys. 45 (2006) 190–193.
[49] L. W. Yu, B. O’Donnell, P. J. Alet, S. Conesa-Boj, F. Peiro, J. Arbiol, and P. I. R. Cabarrocas, “Plasma-Enhanced Low Temperature Growth of Silicon Nanowires and Hierarchical Structures by Using Tin and Indium Catalysts,” Nanotechnology 20 (2009) 225604.
[50] I. Zardo, L. Yu, S. Conesa-Boj, S. Estrade, P. J. Alet, J. Roessler, M. Frimmer, P. R. I. Cabarrocas, F. Peiro, J. Arbiol, J. R. Morante, and A. F. I. Morral, “Gallium Assisted Plasma Enhanced Chemical Vapor Deposition of Silicon Nanowires,"Nanotechnology 20 (2009) 155602.
[51] Y. W. Wang, J. Bauer, S. Senz, O. Breitenstein, and U. Gösele, “Aluminum-Enhanced Sharpening of Silicon Nanocones,” Appl. Phys. A 99 (2010) 705–709.
[52] V. Schmidt, S. Senz, and U. Gösele, “Diameter-Dependent Growth Direction of Epitaxial Silicon Nanowires,” Nano Lett. (2005) 931-935.
[53] T. E. Bogart, S. Dey, K. Lew, S. E. Mohney, and J. M. Redwing, “Diameter-Controlled Synthesis of Silicon Nanowires Using Nanoporous Alumina Membranes,” Adv. Mater. 17 (2005) 114-117.
[54] Y. Wu, R. Fan, and P.D. Yang, “Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires,” Nano Lett. 2 (2002) 83-86.
[55] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and Growth of Si Nanowires from Silicon Oxide,” Phys. Rev. B 8 (1998) 58 .
[56] T. Y. Tan1, S. T. Lee, and U. Gösele, “A Model for Growth Directional Features in Silicon Nanowires,” Appl. Phys. A 74 (2002) 423–432.
[57] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, “Diameter Modification of Silicon Nanowires by Ambient Gas,” Appl. Phys. Lett. 75 (1999) 1842-1844.
[58] X. H. Fan, L. Xu, C. P. Li, Y. F. Zheng, C. S. Lee, and S. T. Lee, “Effects of Ambient Pressure on Silicon Nanowire Growth,” Chem. Phys. Lett. 334 (2001) 229-232.
[59] R. Q. Zhang, Y. Lifshitz, and S. T. Lee, “Oxide-Assisted Growth of Semiconducting Nanowires”, Adv. Mater. 15 (2003) 7-8.
[60] E. K. Lee, B. L. Choi, Y. D. Park, Y. Kuk, S. Y. Kwon, and H. J. Kim, “Device Fabrication with Solid–Liquid–Solid Grown Silicon Nanowires,” Nanotechnology 19 (2008) 185701.
[61] Y. J. Xing, Z. H. Xi, D. P. Yu, Q. L. Hang, H. F. Yan, S. Q. Feng, and Z. Q. Xue, “Growth of Silicon Nanowires by Heating Si Substrate,” Chin. Phys. Lett. 19 (2002) 240-242.
[62] D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, “Controlled Growth of Oriented Amorphous Silicon Nanowires via a Solid-Liquid-Solid (SLS) Mechanism,” Phys. E 9 (2001) 305-309.
[63] T. Wells, M. M. E. Gomati, and J. Wood, “Low Temperature Reactive Ion Etching of Silicon with SF6/O2 Plasmas,” J. Vac. Sci. Technol. B15 (1997) 397.
[64] J. Zhu, Z. F. Yu, S. H. Fan, and Y. Cui, “Nanostructured Photon Management for High Performance Solar Cells,” Mat. Sci. Eng. R 70 (2010) 330-340.
[65] H. B. Xu, N. Lu, D. P. Qi, Li. Gao, J. Hao, Y. Wang, and L. Chi, “Broadband Antireflective Si Nanopillar Arrays Produced by Nanosphere Lithography,” Microelectronic Eng. 86 (2009) 850–852.
[66] L. Xu, W. Li, J. Xu, J. Zhou, L. Wu, X. G. Zhang, Z. Ma, and K. Chen, “Morphology Control and Electron Field Emission Properties of High-Ordered Si Nanoarrays Fabricated by Modified Nanosphere Lithography,” Appl. Surf. Sci. 255 (2009) 5414–5417.
[67] M. A. Tsai, P. C. Tseng, H. C. Chen, H. C. Kuo, and P. Yu, “Enhanced Conversion Efficiency of a Crystalline Silicon Solar Cell with Frustum Nanorod Arrays,” Opt. express 19 (2011) 28-34.
[68] J. Yoo, G. Yu, and J. Yi, “Large-Area Multicrystalline Silicon Solar Cell Fabrication Using Reactive Ion Etching(RIE),” Sol. Energ. Mat. Sol. C. 95 (2011) 2–6.
[69] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14 (2002) 1164-1167.
[70] B. Ozdemir, M. Kulakci, R. Turan, and H. E. Unalan, “Effect of Electroless Etching Parameters on the Growth and Reflection Properties of Silicon Nanowires,” Nanotechnology 22 (2011) 155606.
[71] K. Tsujino and M. Matsumura, “Morphology of Nanoholes Formed in Silicon by Wet Etching in Solutions Containing HF and H2O2 at Different Concentrations Using Silver Nanoparticles as Catalysts,” Electrochimica Acta 53 (2007) 28–34.
[72] M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong, “Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching,” J. Phys. Chem. C 112 (2008) 4444-4450.
[73] K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles,” Adv. Funct. Mater. 16 (2006) 387–394.
[74] X. Li and P. W. Bohn, “Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon,” Appl. Phys. Lett. 77 (2000) 2572-2574.
[75] N. Megouda, T. Hadjersi, G. Piret, R. Boukherroub, and O. Elkechai, “Au-Assisted Electroless Etching of Silicon in Aqueous HF/H2O2 Solution,” Appl. Surf. Sci. 255 (2009) 6210–6216.
[76] H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver Catalysis in the Fabrication of Silicon Nanowire Arrays,” Nanotechnology 17 (2006) 3768-3774.
[77] G. M. Whitesides, J. P, Mathias, and C. T. Seto, “Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures,” Science Vol. 254 (1991) No. 5036 1312-1319.
[78] C. Pacholski, A. Kornowski, and H. Weller, “Self-Assembly of ZnO: From Nanodots to Nanorods,” Angew. Chem. Int. Ed. 41 (2002) 1188-1191.
[79] S. M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf, and W. M. Shih, “Self-Assembly of DNA into Nanoscale Three-Dimensional Shapes,” Nature 459 (2009) 414-418.
[80] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science 295 (2002) 2418-2421.
[81] Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed Colloidal Spheres: Old Materials with New Applications,” Adv. Mater. 12 (2000) 693-713.
[82] J. C. Hulteen and R. P. V. Duyne, “Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces,” J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
[83] A. S. Dimitrov and K. Nagayama, “Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces,” Langmuir 12 (1996) 1303-1311.
[84] J. Aizenberg, P. V. Braun, and P. Wiltzius, “Patterned Colloidal Deposition Controlled by Electrostatic and Capillary Forces,” Phys. Rev. Lett. 84 (2000) 2997-3000.
[85] Micheletto, H. Fukuda, and M. Ohtsu, “A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles,” Langmuir 11 (1995) 3333-3336.
[86] J. Rybczynski, U. Ebels, and M. Giersig, “Large-Scale, 2D Arrays of Magnetic Nanoparticles,” Colloids and Surfaces A: Physicochem. Eng. Aspects 219 (2003) 1-6.
[87] H. Li, J. Low, K. S. Brown, and N. Wu, “Large-Area Well-Ordered Nanodot Array Pattern Fabricated with Self-Assembled Nanosphere Template,” IEEE Sensors J. 8 (2008) 880-884.
[88] K. H. Lee, Q. L. Chen, C. H. Yip, Q. F. Yan, and C. C. Wong, “Fabrication of Periodic Square Arrays by Angle-Resolved Nanosphere Lithography,” Microelectronic Eng. 87 (2010) 1941–1944.
[89] V. Canpean and S. Astilean, “Extending Nanosphere Lithography for the Fabrication of Periodic Arrays of Subwavelength Metallic Nanoholes,” Mater. Lett. 63 (2009) 2520–2522.
[90] J. H. Leea, Y. W. Chung, M. H. Honb, and I. C. Leu, “Fabrication of Tunable Pore Size of Nickel Membranes by Electrodeposition on Colloidal Monolayer Template,” J. Alloy. Compd. 509 (2011) 6528–6531.
[91] Z. Huang, H. Fang, and J. Zhu, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density,” Adv. Mater. 19 (2007) 744-748.
[92] K. Q. Peng, M. L. Zhang, A. J. Lu, N. B. Wong, R. Q. Zhang, and S. T. Lee, “Ordered Silicon Nanowire Arrays via Nanosphere Lithography and Metal-Induced Etching,” Appl. Phys. Lett. 90 (2007) 163123.
[93] X. C. Li, K. Liang, B. K. Tay, and E. H. T. Teo, ” Morphology-Tunable Assembly of Periodically Aligned Si Nanowire and Radial pn Junction Arrays for Solar Cell Applications,” Appl. Surf. Sci. 258 (2012) 6169–6176.
[94] B. Fuhrmann, H. S. Leipner, H. R. Höche, L. Schubert, P. Werner, and U. Gösele, “Ordered Arrays of Silicon Nanowires Produced by Nanosphere Lithography and Molecular Beam Epitaxy,” Nano Lett. 5 (2005) 2524-2527.
[95] H. P. Wang, K. T. Tsai, K. Y. Lai, T. C. Wei, Y. L. Wang, and J. H. He, “Periodic Si Nanopillar Arrays by Anodic Aluminum Oxide Template and Catalytic Etching for Broadband and Omnidirectional Light Harvesting,” Opt. Express 20 (2012) 94-103.
[96] Z. P. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele,” Extended Arrays of Vertically Aligned Sub-10 nm Diameter [100] Si Nanowires by Metal-Assisted Chemical Etching,” Nano Lett. 8 (2008) 3046-3051.
[97] K. Q. Peng, A. J. Lu, R. Q. Zhang, and S. T. Lee,” Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching,” Adv. Funct. Mater. 18 (2008) 3026–3035.
[98] Z. P. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, and U. Gösele, “Oxidation Rate Effect on the Direction of Metal-Assisted Chemical and Electrochemical Etching of Silicon,” J. Phys. Chem. C 114 (2010) 10683–10690.
[99] H. Chen, H. Wang, X. H. Zhang, C. S. Lee, and S. T. Lee, “Wafer-Scale Synthesis of Single-Crystal Zigzag Silicon Nanowire Arrays with Controlled Turning Angles,” Nano Lett. 10 (2010) 864–868.
[100] S. W. Chang, V. P. Chuang, S. T. Boles, and C. V. Thompson, “Metal-Catalyzed Etching of Vertically Aligned Polysilicon and Amorphous Silicon Nanowire Arrays by Etching Direction Confinement,” Adv. Funct. Mater. 20 (2010) 4364–4370.
[101] I. A. Shah, B. M. A. Wolf, W. J. P. van Enckevort, and E. Vlieg, “Wet Chemical Etching of Silicon{111} : Etch Pit Analysis by the Lichtfigur Method,” J. Cryst. Growth 311 (2009) 1371-1377.
[102] J. Q. Han, S. Y. Lu, Q. Li, X. L. Li, and J. Y. Wang, “Anisotropic Wet Etching Silicon Tips of Small Opening Angle in KOH Solution with the Additions of I2/KI,” Sensor Actuat. A Phys. 152 (2009) 75–79.
[103] I. Zubel and M. Kramkowska, “Development of Etch Hillocks on Different Si(hkl) Planes in Silicon Anisotropic Etching,” Surf. Sci. 602 (2008) 1712–1721.
[104] Y. J. Hung, S. L. Lee, K. C. Wu, Y. Tai, and Y. T. Pan, “Antireflective Silicon Surface with Vertical Aligned Silicon Nanowires Realized by Simple Wet Chemical Etching Processes,” Opt. Express 19 (2011) 15792-15802.
[105] J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um, K. T. Park, and J. H. Lee, “A Strong Antireflective Solar Cell Prepared by Tapering Silicon Nanowires,” Opt. Express 18 (2010) A286-A292.
[106] Y. Q. Qu, L. Liao, Y. J. Li, H. Zhang, Y. Huang, and X. F. Duan, “Electrically Conductive and Optically Active Porous Silicon Nanowires,” Nano Lett. 9 (2009) 4539-4543.
[107] L. H. Lin, S. P. Guo, X. Z. Sun, J. Y. Feng, and Y. Wang, ” Synthesis and Photoluminescence Properties of Porous Silicon Nanowire Arrays,” Nanoscale Res. Lett. 5 (2010) 1822–1828.
[108] X. Zhong, Y. Q. Qu, Y. C. Lin, L. Liao, and X. F. Duan, “Unveiling the Formation Pathway of Single Crystalline Porous Silicon Nanowires,” ACS Appl. Mater. Interfaces 3 (2011) 261–270.
[109] R. H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields,” Proc. R. Soc. Lond. A 119 (1928) 173-181.
[110] H. Wu, H. Y. Tsai, H. T. Chiu, and C. Y. Lee, “Silicon Rice-Straw Array Emitters and Their Superior Electron Field Emission,” Appl. Mater. Inter. 2 (2010) 3285–3288.
[111] W. Li, J. Zhou, X. G. Zhang, J. Xu, L. Xu, W. M. Zhao, P. Sun, F.i Song, J. G. Wan, and K. J. Chen, “Field Emission from a Periodic Amorphous Silicon Pillar Array Fabricated by Modified Nanosphere Lithography,” Nanotechnology 19 (2008) 135308.
[112] L. Xu, W. Li, J. Xu, J. Zhou, L. Wu, X. G. Zhang, Z. Y. Ma, and K. J. Chen, “Morphology Control and Electron Field Emission Properties of High-Ordered Si Nanoarrays Fabricated by Modified Nanosphere Lithography,” Appl. Surf. Sci. 255 (2009) 5414–5417.
[113] H. Y. Hsieh, S. H. Huang, K. F. Liao, S. K. Su, C. H. Lai, and L. J. Chen, “High-Density Ordered Triangular Si Nanopillars with Sharp Tips and Varied Slopes: One-Step Fabrication and Excellent Field Emission Properties,” Nanotechnology 18 (2007) 505305.
[114] N. G. Shang, F. Y. Meng, F. C. K. Au, Q. Li, C. S. Lee, I. Bello, and S. T. Lee, “Fabrication and Field Emission of High-Density Silicon Cone Arrays,” Adv. Mater. 14 (2002) 1308-1311.
[115] S. W. Lee, B. L. Wu, and H. T. Chang, “Fabrication of Nanometer-Scale Si Field Emitters Using Self-Assembled Ge Nanomasks,” J. Electrochem. Soc. 157 (2010) 2 H174-H177.
[116] F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, “Electron Field Emission from Silicon Nanowires,” Appl. Phys. Lett. 75 (1999) 1700-1702.
[117] Y. F. Tzeng, H. C. Wu, P. S. Sheng, N. H. Tai, H. T. Chiu, C. Y. Lee, and I. N. Lin, “Stacked Silicon Nanowires with Improved Field Enhancement Factor,” Appl. Mater. Inter. 2 (2010) 331-334.
[118] H. C. Wu, H. Y. Tsai, H. T. Chiu, and C. Y. Lee, “Silicon Rice-Straw Array Emitters and Their Superior Electron Field Emission,” Appl. Mater. Inter. 2 (2010) 3285-3288.
[119] Y. Li, J. Liang, Z. L. Tao, and J. Chen, “CuO Particles and Plates: Synthesis and Gas-Sensor Application,” Mater. Res. Bull. 43 (2008) 2380–2385.
[120] P Samarasekara, N. T. R. N. Kumara, and N. U. S. Yapa, “Sputtered Copper Oxide (CuO) Thin Films for Gas Sensor,” J. Phys.: Condens. Matter 18 (2006) 2417–2420.
[121] S. J. Chang, T. J. Hsueh, I C. Chen, S. F. Hsieh, S. P. Chang, C. L. Hsu, Y. R. Lin, and B. R. Huang, “Highly Sensitive ZnO Nanowire Acetone Vapor Sensor With Au Adsorption,” IEEE T Nanotechnol. 7 (2008) 754-759.
[122] Q. Qia, T. Zhang, L. Liu, X. J. Zheng, Q. J. Yu, Y. Zeng, and H. B. Yang, “Selective Acetone Sensor Based on Dumbbell-Like ZnO with Rapid Response and Recovery,” Sensor. Actuat. B-Chem 134 (2008) 166–170.
[123] M. Parthibavarman, V. Hariharan, and C. Sekar, “High-Sensitivity Humidity Sensor Based on SnO2 Nanoparticles Synthesized by Microwave Irradiation Method,” Mat. Sci. Eng. C-Mater 31 (2011) 840–844.
[124] S. C. Lee, S. Y. Kim, W. S. Lee, S. Y. Jung, B. W. Hwang, D. Ragupathy, D. D. Lee, S. Y. Lee, and J. C. Kim, “Effects of Textural Properties on the Response of a SnO2-Based Gas Sensor for the Detection of Chemical Warfare Agents,” Sensors 11 (2011) 6893-6904.
[125] X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, “Silicon Nanowires as Chemical Sensors,” Chem. Phys. Lett. 369 (2003) 220–224.
[126] C. R. Field, H. J. In, N. J. Begue, and P. E. Pehrsson, “Vapor Detection Performance of Vertically Aligned, Ordered Arrays of Silicon Nanowires with a Porous Electrode,” Anal. Chem. 83 (2011) 4724–4728.
[127] G. G. Salgado, T. D. Becerril, H. J. Santiesteban, and E. R. Andre´s, “Porous Silicon Organic Vapor Sensor,” Opt. Mater. 29 (2006) 51–55.
[128] S. Y. Chien, C. P. Cheng, H. L. Sung, and Y. M. Shang, “Effects of Silicon Nanowire Array Fabricated by Spontaneous Electrochemical Reaction on Volatile Organic Solvent Sensing,” IEEE 4th international (2011).
[129] S. L. Cheng, C. Y. Chen, and S. W. Lee, “Kinetic Investigation of the Electrochemical Synthesis of Vertically-Aligned Periodic Arrays of Silicon Nanorods on (001) Si Substrate,” Thin Solid Films 518 (2010) S190–S195.
[130] 工業技術研究院工業安全衛生技術發展中心提供,丙酮物質安全資料表。
[131] R. K. Joshi and A. Kumar, “Room Temperature Gas Detection Using Silicon Nanowires,” Mater. Today 4 (2011) 52.
[132] S. J. Chang, T. J. Hsueh, I. C. Chen, S. F. Hsieh, S. P. Chang, C. L. Hsu, Y. R. Lin, and B. R. Huang, “Highly Sensitive ZnO Nanowire Acetone Vapor Sensor With Au Adsorption,” IEEE T Nanotechnol Vol 7 (2008) No.6.
[133] H. J. Pandya, S. Chandra, and A. L. Vyas, “Fabrication and Characterization of Low Temperature Acetone Sensor Using CuO Nanowires,” Nanosci Nanotech Let Vol.3 (2011) 744-748.
[134] S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, ” Excellent Antireflection Properties of Vertical Silicon Nanowire Arrays,” Solar Energ. Mater. Solar Cell 94 (2010) 1506–1511.
[135] A.B.D. Cassie and S. Baxter, “Wettability of Porous Surfaces,” Trans. Faraday Soc. 40 (1944) 0546.
|