參考文獻 |
[1] Johnson W L. Fundamental Aspects of Bulk Metallic Glass Formation in Multicomponent Alloys. Mater Sci Forum(1996), 225, 35.
[2] Inoue A, Koshiba H, Zhang T, Makino A. Wide supercooled liquid region and soft magnetic properties of Fe56Co7Ni7Zr0–10Nb (or Ta)0–10B20 amorphous alloys. J Appl Phys(1998), 83, 1967.
[3] Inoue A, Hashimoto K. Advances in Materials Research-”Amorphous and Nano-crystalline Materials-Preparation, Properties, and Applications,” Springer (2001).
[4] Chieh T C, Chu J, Liu C T, Wu J K. Corrosion of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glasses in aqueous solutions. Mater Lett(2003), 57, 3022.
[5] Inoue A, Koshiba M, Makino A. Ferromagnetic Co–Fe–Zr–B amorphous alloys with glass transition and good high-frequency permeability. Appl Phys Lett(1998), 73, 744.
[6] Stoica M, Eckert J, Roth S, Yavari A R, Schultz L. Fe65.5Cr4Mo4Ga4P12C5B5.5 BMGs: Sample preparation, thermal stability and mechanical properties. J Alloy Compd(2007), 434, 171.
[7] Zhang T, Liu F J, Pang S J, Li R. Ductile Fe-Based Bulk Metallic Glass with Good Soft-Magnetic Properties. Mater Trans(2007), 48, 1157.
[8] Du X H, Huang J C, Hsieh K C, Lai Y H, Chen H M, Jang J S C, Liaw P K. Phase-separated microstructures and shear-banding behavior in a designed Zr-based glass-forming alloy. Intermet(2009), 17, 607.
[9] Jang J S C, Jian S R, Pan D J, Wu Y H, Huang J C, Nieh T G. Thermal and mechanical characterizations of a Zr-based bulk metallic glass composite toughened by in-situ precipitated Ta-rich particles. Intermet(2010), 18, 560.
[10] Guo S F, Liu L, Li N, Li Y. Fe-based bulk metallic glass matrix composite with large plasticity. Scr Mater(2010), 62, 329.
[11] Klement W, Willens R H, Duwez P. Noncrystalline structure in solidified gold-silicon alloys. Nature(1960), 187, 869.
[12] Jones H. Splat cooling and metastable phases. Rep Prog Phys(1973), 36, 1425.
[13] Ruhl R C. Cooling rates in splat cooling. Mater Sci Eng(1967), 1, 313.
[14] Pietrowsky P. Novel Mechanical Device for Producing Rapidly Cooled Metals and Alloys of Uniform Thickness. Rev Sci Instrum(1963), 34, 445.
[15] Chen H S, Miller C E. A Rapid Quenching Technique for the Preparation of Thin Uniform Films of Amorphous Solids. Rev Sci Instrum(1970), 41, 1237.
[16] Chen H S, Leamy H J, Miller C E. Preparation of glassy metals. Ann Rev Mater Sci(1980), 10, 363.
[17] Chen H S. Glassy metals. Rep Prog Phys(1980), 43, 353.
[18] Inoue A, Zhang T, Masumoto T. Production of Amorphous Cylinder and Sheet of La55Al25Ni20 Alloy by a Metallic Mold Casting Method. Mater trans(1990), JIM, 31, 425.
[19] Zhang W, Zhang Q S, Qin C L, Inoue A. Synthesis and properties of Cu–Zr–Ag–Al glassy alloys with high glass-forming ability. Mater Sci Eng(2008), B148, 92.
[20] Inoue A, Nishiyama N, Kimura H M. Preparation and Thermal Stability of Bulk Amorphous Pd40Cu30Ni10P20 Alloy Cylinder of 72 mm in Diameter. Mater Trans(1997), JIM, 38, 179.
[21] Kato H, Wada T, Hasegawa M, Saida J, Inoue A. Fragility and thermal stability of Pt- and Pd-based bulk glass forming liquids and their correlation with deformability. Scr Mater(2006), 54, 12, 2023.
[22] Zheng Q, Xu J, Ma E. High glass-forming ability correlated with fragility of Mg–Cu(Ag)–Gd alloys. J Appl Phys(2007), 102, 113519.
[23] Li R, Pang S, Ma C, Zhang T. Influence of similar atom substitution on glass formation in (La–Ce)–Al–Co bulk metallic glasses. Acta Mater(2007), 55, 3719.
[24] Zeng Y Q, Nishiyama N, Inoue A. Development of Ni-Pd-P-B Bulk Metallic Glasses with High Glass-Forming Ability. Mater Trans(2009), JIM, 50, 1243.
[25] Zhang Q S, Zhang W, Inoue A. Preparation of Cu36Zr48Ag8Al8 Bulk Metallic Glass with a Diameter of 25 mm by Copper Mold Casting. Mater Trans(2007), 48, 629.
[26] Ponnambalam V, Poon S J, Shiflet G J. Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J Mater Res(2004), 19, 1320.
[27] Amiya K, Inoue A. Fe-(Cr,Mo)-(C,B)-Tm Bulk Metallic Glasses with High Strength and High Glass Forming Ability. Rev Adv Mater Sci(2008), 18, 27.
[28] Zhu S L, Wang X M, Inoue A. Glass-forming ability and mechanical properties of Ti-based bulk glassy alloys with large diameters of up to 1 cm. Intermet(2008), 16, 1031.
[29] Bernal J D. Packing of Spheres: Co-ordination of Randomly Packed Spheres. Nature(1960), 185, 68.
[30] Gaskell P H. A new structural model for transition metal-metalloid glasses. Nature(1978), 276, 484.
[31] Inoue A, Negishi T, Kimura H M, Zhang T, Yavari A R. High Packing Density of Zr- and Pd-Based Bulk Amorphous Alloys. Mater Trans(1998), JIM 39, 318.
[32] Luo W K, Sheng H W, Alamgir F M, Bai J M, He J H, Ma E. Icosahedral Short-Range Order in Amorphous Alloys. Phys Rev Lett(2004), 92, 145502.
[33] Miracle D B. A structural model for metallic glasses. Nat Mater(2004), 3, 697.
[34] Shen H W, Luo W K, Alamgir F M, Bai J M, Ma E. Atomic packing and short-to-medium-range order in metallic glasses. Nature(2006), 439, 419.
[35] Chen M W. Mechanical Behavior of Metallic Glasses: Microscopic Understanding of Strength and Ductility. Annu Rev Mater Res(2008), 38, 14.
[36] Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys. Acta Mater(2011), 59, 2243.
[37] Miller M, Liaw P. Springer, “Bulk Metallic Glasses-An Overview.”(2008)
[38] Inoue A. High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates. Mater Trans(1995), JIM, 36, 7, 866.
[39] David R. Gaskell, “Introduction to the Thermodynamics of Materials,” Fourth Edition, 251.
[40] Reed-Hill R E, Abbaschian R. PWS, “Physical Metallurgy Principles,” Third Edition(1994), 278.
[41] Afonso C R M, Bolfarini C, Kiminami C S, Bassim N D, Kaufman M J, Amateau M F, Eden T J, Galbraith J M. Amorphous phase formation during spray forming of Al84Y3Ni8Co4Zr1 alloy. J Non-Cryst Solids(2011), 284, 134.
[42] Lu Z P, Liu C T. Role of minor alloying additions in formation of bulk metallic glasses-a review. J Mater Sci(2004), 3, 3965.
[43] Hays C C, Kim C P, Johnson W L. Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing in situ Formed Ductile Phase Dendrite Dispersions. Phys Rev Lett(2000), 84, 2901.
[44] Fan C, Inoue A. Ductility of bulk nanocrystalline composites and metallic glasses at room temperature. Appl Phys Lett(2000), 77, 46.
[45] He G, Eckert J, Loser W and Schultz L. Novel Ti-base nanostructure–dendrite composite with enhanced plasticity. Nature Mater(2003), 2, 33.
[46] Saida J, Kato H, Setyawan A D H, Yoshimi K, Inoue A. Deformation-Induced Nanoscale Dynamic Transformation Studies in Zr-Al-Ni-Pd and Zr-Al-Ni-Cu Bulk Metallic Glasses. Mater Trans(2007), 48, 1327.
[47] Chen H, He Y, Shiflet G J, Poon S J. Deformation-induced nanocrystal formation in shear bands of amorphous alloys. Nature(1994), 367, 541.
[48] Kim J J, Choi Y, Suresh S, Argon A S. Nanocrystallization During Nanoindentation of a Bulk Amorphous Metal Alloy at Room Temperature. Science(2002), 295, 654.
[49] Kumar G, Ohkubo T, Mukai T, Hono K. Plasticity and microstructure of Zr–Cu–Al bulk metallic glasses. Scr Mater(2007), 57, 173.
[50] Choi-Yim H, Johnson W L. Bulk metallic glass matrix composites. Appl Phys Lett(1997), 71, 3808.
[51] Zhang H, Zhang Z F, Wang Z G, Qiu K Q, Zhang H F, Zang Q S, Hu Z Q. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite. Mater Sci Eng(2006), A418, 146.
[52] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M-L, Demetriou M D, Johnson W L. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature Lett(2008), 451, 1085.
[53] Zheng Z, Wu F, He G, Eckert J. Mechanical properties, damage and fracture mechanisms of bulk metallic glass materials. J Mater Sci Technol(2007), 23, 6, 747.
[54] Turnbull D, Cohen M H. On the Free‐Volume Model of the Liquid‐Glass Transition. J Chem Phys(1970), 52, 3038.
[55] Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall(1977), 25, 407.
[56] Huang J C, Chu J P, Jang J S C. Recent progress in metallic glasses in Taiwan. Intermet(2009), 17, 973.
[57] Argon A S. Plastic deformation in metallic glasses. Acta Metall(1979), 27, 47.
[58] Falk M L, Langer J S. Dynamics of viscoplastic deformation in amorphous solids. Phys Rev(1998), E57, 7192.
[59] Honeycombe R W K. Plastic Deformation of Metals. Cambridge press(1984).
[60] Liu C T, Heatherly L, Easton D S, Carmichael C A, Schneibel J H, Chen C H, Wright J L, Yoo M H, Horton J A, Inoue A. Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall Mater Trans(1998), A29, 1811.
[61] Zhang Z F, He G, Eckert J, Schultz L. Fracture Mechanisms in Bulk Metallic Glassy Materials. Phys Rev Lett(2003), 91, 45505.
[62] Donovan P E. A yield criterion for Pd40Ni40P20 metallic glass. Acta Metall(1989), 37, 445.
[63] Lowhaphandu P, Lewandowski J J. Fracture toughness and Notched toughness of bulk amorphous alloy Zr-Ti-Ni-Cu-Be. Scr Mater(2001), 38, 1811.
[64] Inoue A, Zhang T, Masumoto T. Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region. Mater Trans(1990), JIM31, 177.
[65] Turnbull D. “Under what conditions can a glass be formed?,” Contemp Phys(1969), 10, 473.
[66] Lu Z P , Liu C T. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater(2002), 50, 3501.
[67] Thompson C V, Greer A L, Spaepen F. Crystal nucleation in amorphous (Au100−yCuy)77Si9Ge14 alloys. Acta Metall(1983), 31, 1883.
[68] Tanner L E, Ray R. Metallic glass formation and properties in Zr and Ti alloyed with Be - the binary Zr-Be and Ti-Be systems. Acta Metall(1979), 27, 1727.
[69] Du X H, Huang J C, Liu C T, Lu Z P. New criterion of glass forming ability for bulk metallic glasses. J Appl Phys(2007), 101, 86108.
[70] Lu Z P, Hu X, Li Y and Ng S C. Glass forming ability of La–Al–Ni–Cu and Pd–Si–Cu bulk metallic glasses. Mater Sci Eng(2001), A304-306, 679.
[71] Li Y, Ng S C, Ong C K, Hng H H and Goh T T. Glass forming ability of bulk glass forming alloys. Scr Mater(1997), 36, 783.
[72] Guo S, Lu Z P, Liu C T. Identify the best glass forming ability criterion. Intermet(2010), 18, 883.
[73] Gebert A, Mummert K, Eckert J, Schultz L, Inoue A. Electrochemical investigations on the bulk glass forming Zr55Cu30Al10Ni5 alloy. Mater Corros(1997), 48, 293.
[74] Qin C L, Zhang W, Asami K, Ohtsu N, Inoue A. Glass formation, corrosion behavior and mechanical properties of bulk glassy Cu–Hf–Ti–Nb alloys. Acta Mater(2005), 53, 3909.
[75] Habazaki H, Ukai H, Izumiya K, Hashimoto K. Corrosion behaviour of amorphous Ni–Cr–Nb–P–B bulk alloys in 6M HCl solution. Mater Sci Eng(2001), A318, 77.
[76] Qiu C L, Liu L, Sun M, Zhang S M. The effect of Nb addition on mechanical properties, corrosion behavior, and metal-ion release of Zr-Al-Cu-Ni bulk metallic glasses in artificial body fluid. J Biomed Mater Res(2005), A75, 950.
[77] Inoue A, Shen B L, Yavari A R, Greer A L. Mechanical properties of Fe-based bulk glassy alloys in Fe–B–Si–Nb and Fe–Ga–P–C–B–Si systems. J mater Res(2003), 18, 6, 1478.
[78] Antis G R, Chantikul P, Lawn B R, Marshall D B. A critical evaluation of indentation techniques for measuring fracture toughness. J Am Ceram Soc(1981), 64, 533.
[79] Xi X K, Zhao D Q, Pan M X, Wang W H, Wu Y, Lewandowski J J. Fracture of Brittle Metallic Glasses: Brittleness or Plasticity. Phys Rev Lett(2005), 94, 125510.
[80] Jang J S C, Li T H, Jian S R, Huang J C, Nieh T G. Effects of characteristics of Mo dispersions on the plasticity of Mg-based bulk metallic glass composites. Intermet(2011), 19, 738.
[81] Scherrer S S, Denry I L, Wiskott H W A. Comparison of three fracture toughness testing techniques using a dental glass and a dental ceramic. Dent Mater(1998), 14, 246.
|