博碩士論文 993209601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.190.160.84
姓名 卜華文(Canggih Setya Budi)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
(Fabrication of Silver Nanoparticle Arrays by Anodic Alumina Oxide Templates and Their Application for Surface-Enhanced Raman Scattering)
相關論文
★ 開發鎵奈米粒子沉浸於可拉伸聚合物之可調式電漿子結構★ 利用等效差分時域(FDTD)模擬分析自組裝鎵奈米顆粒嵌入可拉伸彈性材料光學性質探討
★ 無鉛銲料錫銀銦與銅基板的界面反應★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究
★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用
★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用
★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板
★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究★ 磷摻雜矽奈米晶粒嵌入於氮化矽基材之材料成長與特性分析
★ 利用電子迴旋共振化學氣相沉積法製備多層SiOxNy:H/SiCxNy:H抗反射薄膜及其於矽基太陽能電池之應用★ 利用新穎方法製作鋁背表面電場應用於結晶矽太陽能電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在拉曼散射光譜中的散射強度相當微弱,若待測物的濃度相當低則會使此項分析具有相當大的挑戰性,因此表面增強拉曼散射 (Surface-Enhanced Raman Scattering, SERS) 這項提升拉曼訊號的技術近年來快速的發展,而在這項技術中製備乾淨及高SERS活性基板的再現性仍存在許多限制。
在本研究中利用模板輔助沉積奈米銀粒子陣列於矽基板上以期作為SERS之應用,利用二次陽極氧化鋁 (Anodic Alumina Oxide, AAO)模板作為蒸鍍的遮罩用以成長奈米銀粒子陣列,在製程中可藉由調整模板的孔徑大小及蒸鍍之厚度,控制奈米銀粒子陣列的尺寸、形狀及間距。
由研究結果得知,孔徑尺寸及粒子間距之比例 (Interspacing Ratio ,γ)將影響SERS活性,似半球形之Ag NP2具有較大的γ值 (8.82)使其在SERS性質的提升大於γ值較小之Ag NP1 (4.32);而有趣的是,錐狀的奈米銀具有最高的SERS活性。
無論是似半球型或錐狀的奈米銀粒子陣列皆可有效的提升拉曼訊號,與塊材的基板相比,在羅丹明6G (Rhodamine 6G)濃度為10-6M時可提升拉曼訊號約107倍。
摘要(英) Due to the very small scattering intensity of ordinary Raman spectroscopy, the detection of analytes at very low concentration is a very challenging problem. It drives a rapid development of surface-enhanced Raman scattering (SERS) to amplify the Raman signals. However, it is still mainly limited by the reproducible preparation of clear and highly SERS-active substrate.
In this study, we introduced template-assisted deposition method to fabricate silver nanoparticle arrays on Si wafer for SERS application. The free standing through holes anodic alumina oxide (AAO) templates were firstly prepared by two step anodization and used as masks during vapor-phase deposition. Tunable size, shape and spacing of silver nanoparticle arrays can be obtained by adjusting the pore size of templates and changing the deposited silver thickness.
It was found that the diameter size and interspacing ratio (γ) affects their SERS activity, hemispherical-like Ag NP2 which has larger γ 8.82 performed higher enhancement properties than that of Ag NP1with γ 4.32. Interestingly, (cone-like Ag nanoparticles, Ag NC) which has sharp edge at the top showed the highest activity among others. These SERS-active substrates drastically enhanced the Raman signals of 10-6 M Rhodamine 6G up to 107 folds compared to the bulky reference.
關鍵字(中) ★ 表面增強拉曼散射
★ 奈米銀粒子
★ 陽極氧化鋁
關鍵字(英) ★ Ag nanoparticles
★ AAO
★ SERS
論文目次 摘要…………………………………………………………………………………i
Abstract ……………………………………………………………………ii
Acknowledgement………………………………………………………………iii
Contents …………………………………………………………………………iv
List of Figures …………………………………………………………………vii
List of Tables …………………………………………………………………x
Chapter 1 Introduction …………………………………………………………1
Chapter II Literature Review………………………………………………………5
2.1 Development of SERS…………………………………………………………5
2.1.1 Conventional Raman Spectroscopy …………………………5
2.1.2 History of SERS……………………………………………9
2.1.3 Mechanism of SERS………………………………………………………11
2.1.3.1 Electromagnetic field enhancement………………………………………11
2.1.3.2 Chemical enhancement………………………………13
2.2SERS Enhancement Factor……………………………………………………15
2.3SERS-Active Substrate………………………………………………………17
2.3.1Random and non-uniform roughened substrate……………………………17
2.3.2Colloidal metal nanoparticles………………………………………………20
2.3.3Metal nanoparticles immobilized on solid substrate………21
2.3.4Highly ordered metallic nanostructure arrays on solid substrate…………23
2.3.4.1 Langmuir Blodgett technique……………………………………………23
2.3.4.2 Nanolithography and nanoimprint………………………………………24
2.3.4.3 Template methods……………………………………28
2.4Anodic Aluminum Oxide (AAO) Template…………………………30
2.4.1AAO configuration…………………………………………………………30
2.4.2Fabrication routes for AAO…………………………………………………32
2.4.3Self-organized nanoporous AAO formation…………………………………32
2.4.4AAO-assisted nanostructure fabrication……………………………………34
2.5Rhodamine 6G Dye as SERS Probe Molecule………………………………36
Chapter III Experimental Section ………………………………………………37
3.1Chemicals and Materials………………………………………………………37
3.2Preparation of SERS Substrates………………………………………………39
3.2.1Preparation of nanoporous AAO templates…………………40
3.2.2AAO template-assisted fabrication of Ag nanoparticles……………………42
3.3Material Characterization ……………………………………………………43
3.3.1Scanning Electron Microscopy ……………………………………………43
3.3.2Image J 1.45m Software ……………………………………43
3.3.3Raman Spectroscopy…………………………………………………43
3.4SERS Evaluation………………………………………………………………44
3.4.1Preparation of analytes……………………………………44
3.4.2SERS Measurement………………………………………………………44
3.4.3Calculation of SERS enhancement factor (EF) ………………45
Chapter IV Results and Discussion ……………………………………………46
4.1Preparation of AAO Templates ………………………………………46
4.1.1Aluminum electropolishing pretreatment ……………………46
4.1.2AAO templates prepared by two-step anodization …………51
4.2 Fabrication of Ag Nanoparticle Arrays by AAO template method……65
4.2.1 Silver nanoparticle arrays with different diameter-spacing ratio ………65
4.2.2 Silver nanoparticle arrays with cone-like shape……………77
4.3SERS Activity of Ag Nanoparticle Arrays …………………………………79
4.3.1Diameter-spacing ratio (γ) effect on the Raman signal enhancement………79
4.3.2SERS enhancement factor ……………………………………84
4.3.3 Nanoparticle shape effect on the Raman signal enhancement..88
Chapter V Conclusions …………………………………………………………89
References ………………………………………………………………………91
參考文獻 [1] R.L. McCreery, Raman Spectroscopy for Chemical Analysis, 2000, John Wiley & Sons, New York
[2] Smith E, Dent G, Modern Raman Spectroscopy, 2000, John Wiley & Sons, New York
[3] M. Fleischmann, P.J. Hendra, A.J. McQuilla, Chem. Phys. Lett., 1974, 26, 163
[4] A. Campion and P. Kambhampati, Chem. Soc. Rev., 1998, 27, 241
[5] K.A. Bosnick, J. Jiang, L.E. Brus, J. Phys. Chem. B, 2002, 106, 8096
[6] J. Zheng, Y. Zhou, X. Li, Y. Ji, T. Lu, R. Gu, Langmuir, 2003, 19, 632
[7] S.E.J. Bell, N.M.S. Sirimuthu , Analyst, 2004, 129, 1032
[8] R.L. Ferraro, Introductory Raman Spectroscopy, 1994, Academic Press U.S.A
[9] D.L. Jeanmaire, R.P. Van Duyne, J. Electroanal. Chem., 1977, 84, 1
[10] M.G. Albrecht, J.A. Creighton, J. Am. Chem. Soc., 1997, 99, 5215
[11] B. Pettinger, U. Wenning, H. Wetzel, Surface Science, 1980, 101, 409
[12] M. Moskovits, J. Chem. Phys., 1978, 69, 4159
[13] R.M. Hexter, M.G. Albercht, Spectrochimica Acta Part A – Molecular and Biomolecular Spectroscopy, 1979, 35, 233
[14] J.C. Rubin, J. Electroanal. Chem., 1987, 220, 339
[15] K. Carron, K. Mullen, M. Lanuoette, H. Angersbach, Appl. Spectrosc., 1991, 45, 420
[16] S.M. Nie, S.R. Emery, Science, 1997, 275, 1102
[17] K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R. Dasari, M.S. Feld, Phys. Rev. Lett., 1997, 78, 1667
[18] S.E.J. Bell, N.M.S. Sirimuthu, Chem. Soc. Rev., 2008, 37, 1025
[19] T.H. Reilly, S.H. Chang, J.D. Corbman, G.C. Schatz, K.L. Rowlen, J. Phys. Chem. C, 2007, 111, 1689
[20] M. Moskovits, Rev. Mod. Phys., 1985, 57, 783
[21] K.A. Willets, R.P. Van Duyne, Ann. Rev. Phys. Chem., 2007, 58, 267
[22] J.C. Hulten, R.P. Van Duyne, J. Vac. Sci. Techno. A, 1995, 13, 1553
[23] H.X. Xu, J. Aizpurua, M. Kall, P. Apell, Phys. Rev. E, 2000, 62, 4318
[24] S.Y. Ding, D.Y. Wu, Z.L. Yang, B. Ren, X. Xu, Z.Q. Tian, Chem. J. Chin. Univ. Chin., 2008, 29, 2569
[25] J.I. Gersten, R.L. Birke, J.R. Lombardi, Phys. Rev. Lett., 1979, 43, 147
[26] E. Burstein, Y.J. Chen, C.Y. Chen, S. Lundquist, E. Tosatti, Solid State Commun., 1979, 29, 567
[27] E.C. Le Ru, E. Blackie, M. Meyer, P.G. Etchegoin, J. Phys. Chem. C, 2007, 111, 13794
[28] N. Felidj, J. Aubard, G. Levi, J.R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, F.R. Aussenegg, Phys. Rev. B, 2002, 65, 9
[29] K. Hering, D. Cialla, K. Ackermann, T. Dorfer, R. Moller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rosch, J. Popp, Anal. Bioanal. Chem., 2008, 390, 113
[30] P. Gao, M.J. Weaver, J. Phys. Chem., 1985, 89, 5040
[31] B. Ren, G.K. Liu, X.B. Lian, Z.L. Yang, Z.Q. Tian, Anal. Bioanal. Chem., 2007, 388, 29
[32] W. Xu, L. Zhang, J. Zhang, X. Hu, and L. Sun, Appl. Surf. Sci., 2009, 255, 6612
[33] D.S. Knight, R. Weimer, L. Pilione, W.B. White, Appl. Phys. Lett., 1990, 56, 132
[34] T.K. Sau, C.J. Murphy, J. Am. Chem. Soc., 2004, 126, 8648
[35] P. Hildebrandt, M. Stockburger, J. Phys. Chem., 1984, 88, 5935
[36] C.J. Orendorff, A. Gole, T.K. Sau, C.J. Murphy, Anal. Chem., 2005, 77, 3261
[37] R.G. Freeman, K.C. Grabar, K.J. Allison, R.M. Bright, J.A. Davis, A.P. Guthrie, M.B. Hommer, M.A. Jackson, P.C. Smith, D.G. Walter, M.J. Natan, Science, 1995, 267, 1629
[38] H. Wang, C.S. Levin, N.J. Halas, J. Am. Chem. Soc., 2005, 127, 14992 [39] M. Mulvihil, A. Tao, K. Benjauthrit, J. Arnold, P.D. Yang, Angew. Chem. Int. Ed., 2008, 47, 6456
[40] G. Robert, Langmuir Blodgett Films, 1990, Plenum, New York
[41] A. Tao, J.X. Huang, P.D. Yang, Acc. Chem. Res., 2008, 41, 1662
[42] A. Tao, F. Kim, C. Hess, J. Goldberger, R.R. He, Y.G. Sun, Y.N. Xia, P.D. Yang, Nano Lett., 2003, 3, 1229
[43] A. Tao, P. Sinsermsuksakul, P.D.Yang, Nat. Nanotechnol., 2007, 2, 435
[44] M. Kahl, E. Voges, S. Kostrewa, C. Viets, W. Hill, Sensor & Acuator. B, 1998, 51, 285
[45] N.A. Abu Hatab, J.M. Oran, M.J. Sepaniak, ACS Nano, 2008, 2, 377
[46] S. Mahajan, M. Abdelsalam, Y. Suguwara, S. Cintra, A. Russell, J. Baumberg, P. Bartlett, Phys. Chem. Chem. Phys., 2007, 9, 104
[47] C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B., 2003, 107, 7426
[48] K.Y. Ng, Y. Lin, A.H.W. Ngan, J. Mech. Phys. Solid, 2011, 59, 251
[49] C.R. Martin, Science, 1994, 266, 1961
[50] O. Jessensky, F. Muller, U. Goselle, Appl. Phys. Lett., 1998, 72, 1173
[51] H. Masuda, F. Hasegawa, S. Ono, J. Electrochem. Soc., 1997, 144, 127
[52] Y. Lei, W. Cai, G. Wilde, Prog. Mater. Sci., 2007, 52, 465
[53] A. Belwalkar, E. Grasing, W.V. Geertruyden, Z. Huang, W.Z. Misiolek, J. Memb. Sci., 2008, 319, 192
[54] H. Masuda, K. Fukuda, Science, 1995, 268, 1466
[55] H. Masuda, H. Yamada, M. Satoh, H. Asoh, Appl. Phys. Lett., 1997, 71, 2770
[56] A.P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, J. Appl. Phys., 1998, 84, 6023
[57] P. Parkhutic and V. I. Shershulsky,J. Phys. D: Appl. Phys. 1992, 25, 1258
[58] F. Li, L. Zhang, R.M. Metzger, Chem. Mater., 1998, 10, 2470
[59] F. Matsumoto, M. Ishikawa, K. Nishio, H. Masuda, Chem. Lett., 2005, 34, 509
[60] H. Masuda, K. Yasui, Y. Sakamoto, M. Nakao, T. Tamamura, K. Nishio, J. Appl. Phys., 2001, 40, 1267
[61] Y. Lei, W.K. Chim, Chem. Mater., 2005, 86, 103
[62] J.C. Trefry, J.L. Monahan, K. Weaver, A. Meyerhofer, M.M. Markopolous, Z.S. Arnold, D.P. Wooley, I.E. Pavel, J. Am. Chem. Soc., 2010, 32, 10970
[63] A.J. Creighton, C.G. Blatchford, A.M. Grant, J. Chem. Soc., 1979, 75, 790
[64] T. Fujita, N. Iyi, T. Kusogi, A. Ando, T. Deguchi, T. Sota, Clays. Clay. Miner., 1997, 45, 77
[65] A. Rauf, M. Mehmood, M.A. Rasheed, M. Aslam, J. Sol. State Elcetrochem., 2009, 13, 321
[66] X. Zhao, P. Jiang, S. Xie, J. Feng, Y. Gao, J. Wang, D. Liu, L. Song, L. Liu, X. Dou, S. Luo, Z. Zhang, Y. Xiang, W. Zhou, G, Wang, Nanotech., 2006, 17, 35
[67] G.Q. Ding, M.J. Zheng, W.L. Xu, W. Z. Shen, Nanotech., 2005, 16, 1285
[68] A.P. Li, F. Muller, U. Goselle, Electrochem. Solid State Lett., 2000, 3, 131
[69] W.L. Xu, H. Chen, M.J. Zheng, G.Q. Ding, W.Z. Shen, Optical Mater., 2006, 28, 1160
[70] C. Kim, J.B. Park, H.G. Jee, S.B. Lee, J.H. Boo, S.K. Kim, J. Nanosci. Nanotech. , 2005, 5, 306
[71] S.K. Park, J.S. Noh, W.B. Chin, D.D. Sung, Curr. Appl. Phys., 2007, 7, 180
[72] D.A. Genov, A.K. Sarychev, V.M. Shalev, A. Wei, Nano Lett., 2004, 4, 153
[73] K. Wong-ek, P. Eiamchai, M. Horprathum, V. Patthanaettakul, P. Limnonthakul, P. Chindaudom, N. Nuntawong, Thin Solid Films, 2010, 518, 7128
[74] E.D. Palik, Handbook of Optical Constants of Solids, 1985, Academic Press, New York
[75] J.I. Gersten, A. Nitzan, J. Chem. Phys., 1980, 73, 3023
[76] P.F. Liao, A. Wokaun, J. Chem. Phys., 1982, 76, 751
指導教授 陳一塵(I-chen Chen) 審核日期 2012-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明