博碩士論文 983208001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:3.133.152.26
姓名 黃維麒(Wei-chi Huang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 無震盪式驅動的液體透鏡裝置應用於光束控制與搭配適應性光學系統的增幅能力
(An oscillation-free actuation of liquid lens for optical beam control and capability of adaptive optics enhancement)
相關論文
★ 快速鑄造與單/雙蠟注射成型在歧管熔模鑄造中尺寸一致性的比較★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究
★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試★ 無心研磨製程參數優化研究
★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例★ 精密熱鍛模擬及模具合理化分析
★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究★ 模組化滾針軸承自動組裝設備設計開發與功能驗證
★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究★ 雷射焊補運用於壓鑄模具壽命改善研究
★ 晶粒成長行為對於高功率元件可靠度改善的驗證★ HF-ERW製管製程分析及SCADA 工業4.0運用
★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測★ 精密閥件射出成形製程開發-CAE模擬與開模驗證
★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於光遮蔽器部分,我們證實了一個機械式光遮蔽器,它整合了適應性光學系統和可重構的黑色液體(摻雜染料的溶液)。使用注射器吸入溶液加上精確的容量控制,使非透明且摻雜染料的薄膜可由透明彈性膜取代局部空間,形成一個可通光的孔徑。此裝置的孔徑變化可由0.6 mm到6.9 mm連續變化的,藉由注射器幫浦射入或吸出液體體積來做孔徑的精密調整。經由實驗上的研究,在搭配適應性光學(adaptive optical, AO)系統後,藉由波前的校正,可以提升光強度。實驗中,不同的AO gain值,會有不同的控制補償效果,分別使用值為2000、1000、500和100的gain值來量測光強度的平均值並做比較,結果量測出AO gain值在500的條件下,由實驗結果證實有無AO比較下,有最大的光強度差值為~5μW。在先前的文獻實驗數據中,光強度在24μW的微弱情況下搭配AO,增加最大光強度差值亦為~5μW。由此可知,此光遮蔽器搭配AO在微弱光源下時,有良好的補償效果。
對於光束控制器部分,我們展示了一個可藉由重新配置流體透鏡來達到無震盪式驅動的新型光束控制器。此裝置主要由位在PDMS孔中間層的彈性膜與被透光平板分別包夾在中間且充滿著兩種不同流體(水和空氣)的腔體所組成。在啟動的狀態下,藉著形成的平凹透鏡讓穿過水與空氣界面的入射光被發散開來,導致形成一個黑暗的狀態。在未啟動的狀態下,此處的彈性膜恢復其原始的平坦狀態,並傳輸入射光形成開啟的明亮狀態。相較之下,流體透鏡在使用傳統的光束控制切換開關狀態時,必會遭遇各種程度的震盪,是由於彈性膜與剛性基板間機械力接觸所導致,而與使用液體的黏滯程度與表面張力間存在著複雜的關聯性。相對於常關(normally-close)的裝置而言,本次目標的驅動裝置是屬於較流行的常開(normally-open)形式,而這樣的方式也完全地避免了在啟動時,彈性膜會撞擊到剛性基板的問題。同樣地,我們也證實了在LED白光下反應時間相對於不同照度(Illumination)變化的範圍關係圖,使此裝置的反應時間可依其照度的條件做50毫秒至200毫秒的調整。這新型的驅動機構有巨大的潛力應用於光柵、可調變的光衰減器、可調式光圈、顯示器。
摘要(英) For optical switches part, we demonstrate a mechanical based optical switch integrated with adaptive optics and a reconfigurable black liquid (dye-doped liquid). Using the suction of a syringe and precise volume control, a non-transparent dye-doped film can be replaced locally by a transparent elastomeric membrane, creating an aperture through which light can pass. Its diameter can be continuously tuned between 0.6 and 6.9 mm, simply by varying the injected fluid volume. Adaptive optics (AO) capability and possible enhancement of the lost power intensity of ink-polluted glass plate is also experimentally investigated. AO gain effects of using gain values of 2000, 1000, 500, and 100, respectively by adjusting and comparing average power intensity are investigated. The measured power intensity with/without AO for the Gain = 500 indicates a maximum difference value ~5μW. Optical switches and tunable optical apertures (or diaphragms) have great potential in various areas of application, such as communication, microscopy, display and lab-on-a-chip.
For optical beam controller part, we demonstrate a mechanical based, liquid-driven optical switch integrated with adaptive optics and a reconfigurable black liquid (dye-doped liquid). Device aperture can be continuously tuned between 0.6 and 6.9 mm, precisely achieved by a syringe pump for volume control. Adaptive optics (AO) capability and possible enhancement of the lost power intensity of ink-polluted glass plate is also experimentally investigated. While measured power intensity with/without AO indicates only a marginal difference of ~1%, a significant difference of 3 seconds in the response characteristic of “switching on” time can be observed. Extremely high contrast ratio of ~105 for a red color light is achieved.
關鍵字(中) ★ 光束控制
★ 適應性光學
關鍵字(英) ★ optical beam control
★ optical switch
★ adaptive optics
論文目次 中文摘要(Chinese Abstract) i
英文摘要(English Abstract) iii
致 謝 v
目錄 vii
圖目錄 ix
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 液體透鏡 (光學裝置) 1
1-2-1 電溼潤 (electrowetting) 1
1-2-2 介電泳動 (dielectrophoresis) 7
1-2-3 水凝膠 (stimuli responsive hydrogels) 9
1-2-4 流體壓力 (fluidic pressure) 11
1-3 論文架構 13
第二章 新型液壓驅動彈性膜的可調式孔徑光遮蔽器 14
2-1 導論 14
2-2 實驗裝置 16
2-2-1 可調變聚焦鏡(deformable mirror) 16
2-2-2 波前感測器(Shack-Hartmann wavefront sensor) 17
2-2-3 光功率計(optical power meter) 18
2-2-4 適應性光學系統(adaptive optics system)實驗架構 19
2-3 光遮蔽器(optical switch) 21
2-3-1 結構 21
2-3-2 運作機構 22
2-4 結果與討論 23
2-4-1 比較使用墨水與去離子水的性能差異 23
2-4-2 隨體積或孔徑變化對應的光衰減程度 24
2-4-3 搭配適應性光學增幅與最佳化控制Gain值 26
第三章 無震盪式驅動的流體透鏡應用於光學上的光束控制器 28
3-1 光束控制器(optical beam control) 29
3-2 新舊光束控制器之性能比較 31
3-2-1 實驗設計 31
3-2-2 光強度結果比較 31
3-3 結果與討論 34
3-3-1 隨體積或孔徑變化對應的光衰減程度 34
3-3-2 對應於照度之反應時間 36
第四章 結論 38
4-1新型液壓驅動彈性膜的可調式孔徑光遮蔽器 38
4-2 無震盪式驅動的流體透鏡應用於光學上的光束控制器 38
參考文獻 39
參考文獻 [1] C. S. Liu, P. D. Lin, P. H. Lin, S. S. Ke, Y. H. Chang, and J. B. Horng, “Design and Characterization of Miniature Auto-Focusing Voice Coil Motor Actuator for Cell Phone Camera Applications,” IEEE Trans. Magn., 45(1),155–159 (2009)
[2] D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[3] S. A. Reza, and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun.282(7), 1298–1303 (2009).
[4] Y. J. Lin, K. M. Chen, and S. T. Wu, “Broadband and polarization-independent beam steering using dielectrophoresis-tilted prism,” Opt. Express 17(10), 8651–8656 (2009).
[5] N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[6] H. Ren, S. Xu, and S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express 18(11), 11904–11910 (2010).
[7] H. Ren, S. Xu, D. Ren, and S. T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express 19(3), 1985–1990 (2011).
[8] H. Ren, and S. T. Wu, “Optical switch using a deformable liquid droplet,” Opt. Lett. 35(22), 3826–3828 (2010).
[9] J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz,“Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[10] C. U. Murade, J. M. Oh, D. van den Ende and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15525–15531 (2011).
[11] R. Shamai, D. Andelman, B. Berge, and R. Hayes, “Water, electricity, and between ... On electrowetting and its applications,” Soft Matter 4(1), 38–45 (2007).
[12] C. B. Gorman, H. A. Biebuyck, and G. M. Whitesides, “Control of the Shape of Liquid Lenses on a Modified Gold Surface Using an Applied Electrical Potential across a Self-Assembled Monolayer,” Langmuir 11(6), 2242–2246 (1995).
[13] B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Euro. Phys. J. E 3, 159-163 (2000).
[14] S. Kuiper, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–-1130 (2004).
[15] R. A. Hayes, and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425, 383–385 (2003).
[16] C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express, vol. 14(9), 4101–4106 (2006).
[17] C. C. Cheng, and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[18] N. T. Nguyena, “Micro-optofluidic Lenses: A review,” Biomicrofluidics 4(3), 031501 (2010)
[19] H. Ren and S. T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect,” Opt. Express 16(4), 2646–2652 (2008).
[20] H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[21] L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses ctivated by stimuliresponsive hydrogels,” Nature 442, 551-554 (2006).
[22] X. Zeng, and H. Jiang, “Tunable liquid microlens actuated by infrared light-responsive hydrogel,” Appl. Phys. Lett. 93(15), 151101 (2008).
[23] H. Yu, G. Zhou, F. S. Chau, S. K. Sinha, “Tunable electromagnetically actuated liquid-filled lens,” Sensor Actuat. A-Phys. 167, 602–607 (2011)
[24] G. C. Knollman, J. L. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49, 253-261(1971).
[25] Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, and W. Christian, “Mechanical modeling of fluid-driven polymer lenses,” Appl. Opt. 47(20), 3658–3668 (2008).
[26] H. Ren, and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
[27] H. Ren, D. Fox, P. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031-8036 (2006).
[28] S. Xu, H.W. Ren, Y.J. Lin, M.G.J. Moharam, S.T. Wu, N. Tabiryan, “Adaptive liquid lens actuated by photo-polymer,” Opt. Express 17(20), 17590–17595 (2009)
[29] H. Ren, and S. T. Wu, “Variable-focus liquid
lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[30] Thorlabs, “Adaptive Optics Kits Operating,”
<http://www.thorlabs.hk/Thorcat/18100/18182-D02.pdf>
[31] K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[32] Hamamatsu Photonics K.K., “Application circuit examples of Si photodiode,”
<http://sales.hamamatsu.com/assets/applications/SSD/si_pd_circuit_examples.pdf>
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2012-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明