博碩士論文 973209009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:3.142.121.153
姓名 陳彥霖(Yen-lin Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
(Effect of cooling rate of solution treatment on microstructure and mechanical properties of SP-700)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討
★ 鈧對Al-7Si-0.6Mg合金機械性質影響★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 高壓氫壓縮機用之儲氫合金開發★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響
★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響
★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響
★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響
★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究★ 固溶處理對Al-9.0Zn-2.3Mg-xCu合金機械性質與腐蝕性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) SP-700鈦合金經固溶處理後,水淬合金微結構由αp(初析α)+ α”(麻田散鐵)+βr(殘留β)組成,於拉伸過程發生「應力誘發麻田散鐵」相變化,使βr轉變為α與α”造成強度上升,此時水淬合金同時具有高強度與高延性,經時效處理後α”與βr會分解析出α+β平衡相,使強度大幅提升但延性下降;空冷與爐冷合金由αp+α(析出相)+β(平衡相)組成,強度較水淬合金高,經時效後微結構形貌較無變化,強度僅小幅提升。綜合上述可知,考量SP-700鈦合金高強度特性,可由固溶水淬合金,經時效後得到;綜合拉伸性質,以固溶處理水淬合金較優良。
摘要(英) According to this research, the microstructure of solution treatment by WQ alloy of SP-700 is constructed by αp(primary α)+ α”(martensite) + βr(retained β). Stress induced martensite transformation happened during tensile process, which makes strength superior due to βr transformed into α”. WQ alloy has high strength and ductility in the meanwhile. In addition, α” and βr is going to precipitate α+β stable phase by aging treatment. Aging makes WQ alloy became much stronger but poor ductility. The microstructure of AC and FC alloys are both formed by αp+α(precipitation)+β(stable), and have better strength than WQ alloy, but there is no phase transformation during aging treatment. From the above, solution treatment and aging of WQ alloy of SP-700, which has the best strength. Good tensile properties prefer WQ alloy without aging.
關鍵字(中) ★ 機械性質
★ 冷卻速率
★ SP-700
★ 固溶處理
關鍵字(英) ★ SP-700
★ Solution treatment
★ Cooling rate
★ Mechanical properties
論文目次 圖目錄
圖1.1添加各類型安定元素之鈦合金相圖...................................3
圖1.2 Ti-Al 二元相圖.....................................................................4
圖1.3模擬二元相圖……………………………………………..8
圖1.4 Ti-6Al-4V 於950℃固溶處理2hr後,於500℃人工時效
4小時之TEM照片...........................................................................9
圖1.5 Ti-6Al-4V合金由β相區緩慢冷卻相變化示意圖...............11
圖1.6 Ti-6Al-4V由α+β兩相區(900℃)緩慢冷卻之微結構...........11
圖1.7 Ti-6Al-4V 非平衡冷卻微結構變化示意圖…………......13
圖1.8 SP-700鈦合金800℃固溶處理後進行不同時效溫度之時效硬化曲線....................................................................16
圖2.1金相、硬度試片取樣示意圖.............................................20
圖2.2ASTM E8-04 拉伸試片規範............................................22
圖3.1SP-700 鈦合金經850℃固溶處理後水淬與500℃時效微結構
金相圖…………………………………………………..25
圖3.2SP-700鈦合金(a)經850℃固溶處理水淬與500℃時效之X-ray 繞射分析圖。(b)時效後以慢速0.01°/s、小角度2θ=40。~42。之X-ray繞射分析圖。…………………………………………28
圖3.3 SP-700鈦合金經850℃固溶處理空冷,與500℃時效金相圖
………………………………...................................30
圖3.4SP-700鈦合金經850℃固溶處理空冷與500℃時效之X-ray 繞射分析圖。.................................................................31
圖3.5SP-700鈦合金經850℃固溶處理爐冷,與500℃時效金相圖………………………………………………...........33
圖3.6 SP-700鈦合金經850℃固溶處理爐冷與500℃時效之
X-ray 繞射分析圖….........................................................39
圖3.7 SP-700鈦合金經850℃固溶處理冷卻後之DSC試驗...35
圖 3.8 SP-700鈦合金之HV硬度試驗壓痕...............................36
圖3.9 SP-700鈦合金 850℃固溶處理後水淬、空冷、爐冷與500℃時效後,室溫應力-應變曲線圖........................ 40
總目錄
摘要…………………………………………………………………Ⅰ
英文摘要……………………………………………………………II
總目錄………………………………………………………………III
圖目錄………………………………………………………………V
表目錄………………………………………………………………VII
一、前言與文獻回顧………………………………………………..1
1.1鈦合金分類…….…..……………………………………….. 2
1.1.1純鈦……………….………………………………….....2
1.1.2 α型鈦合金………………………………………………4
1.1.3 α+β型鈦合金…………………………………………..5
1.1.4 β型鈦合金………………………………………………6
1.2 鈦合金的熱處理……………………………………………8
1.2.1退火……………………………………………………...8
1.2.2析出熱處理……………………………………………...8
1.2.2-(a) 固溶處理…………………………………………8
1.2.2-(b) 人工時效…………………………………………9
1.2.3 鈦合金固溶處理過程之相變化……………………….10
1.2.3.1 鈦合金平衡冷卻…………………………………..10
1.2.3.2 鈦合金非平衡冷卻………………………………..12
1.2.4 鈦合金時效相變化…………………………………….14
1.3 SP-700鈦合金簡介…………………………………………14
1.3.1 SP-700析出熱處理…………………………………….15
1.3.1.1 SP-700之固溶處理………………………………..15
1.3.1.2 SP-700之時效處理………………………………..16
1.3.2 SP-700 與Ti-6Al-4V 性質比較…………………….17
二、實驗流程……………………………………………………...19
2.1 實驗材料……………………………………………………19
2.2 析出熱處理…………………………………………………19
2.2.1 固溶處理………………………………………………19
2.2.2 人工時效……………………………………………….19
2.3 微結構分析…………………………………………………19
2.3.1 金相觀察……………………………………………….20
2.3.2 XRD 分析………………………………………………20
2.3.3 EPMA成分分析………………………………………..21
2.3.4 DSC 微差掃描分析儀…………………………………21
2.4 機械性質測試………………………………………………21
2.4.1 硬度試驗………………………………………………..22
2.4.2 拉伸試驗……………………………………………….22
三、結果與討論……………………………………………………23
3.1微結構分析…………………………………………………..23
3.1.1 SP-700固溶處理後水淬合金………………………….23
3.1.2 SP-700固溶處理後空冷合金………………………….29
3.1.3 SP-700固溶處理後爐冷合金………………………….32
3.1.4 微差熱掃描儀(DSC)分析……………………………...35
3.2機械性質測試………………………………………………..36
3.2.1 固溶處理後水淬、空冷、爐冷對硬度之影響……….36
3.2.2 固溶處理後水淬、空冷、爐冷對拉伸性質之影響….39
四、結論……………………………………………………………41
五、參考資料………………………………………………………42
表目錄
表1.1 四類鈦合金之成分、熱處理以及機械性質………………3
表1.2 SP-700與Ti-64合金機械性質比較………………………18
表2.1 SP-700 鈦合金之成分……………………………………19
表3.1 SP-700鈦合金850℃固溶處理冷卻,500℃時效之室溫
機械性質(含硬度、拉伸)彙整表…………………………………37
表3.2 時效前、後之機械性質變化量彙整表……………………38
參考文獻 [ATT] M.M. Attallah, S.Zabeen,R.J.Cernik,M.Preuss, ”Comparative determination of the α/β phase fraction in α+β-titanium alloys using X-ray diffraction and electron micro scopy”, Materials Characterization 60 (2009) 1248-1256
[AST] ASTM E8-04,Annual Book of ASTM Standards, Vol.03.01 (1991)
[BRE] William D. Brewer, R. Keith Bird, Terryl A. Wallace, “Titanium Alloys and processing for high speed aircraft”, Materials Science and Engineering A243 (1998) 299-304.
[BRO1] Brooks CR. Heat treatment, structure and properties of non ferrous alloys. Metals Park (OH): ASM International (1982) p.329
[BRO2] Brooks,C.R, Nonferrous Alloys, American Society for Metals (1984)
[CAL] William D. Callister ,Material Sciense and Engineering: An Introduction, John Wiley & Sons, Inc.seventh edition (2006) p.174
[CHE] J.C. Chesnutt, C.G. Rhodes, J.C. Williams,”Relationship Between Mechanical Properties,Microstructure, and Fracture Topography in α+βTitanium Alloys”, Fractography-Microscopic Cracking Processes, ASTM STP 600, American Society for Testing and Materials (1976) 99-138
[CUI] Cui Chunxiang, Hu BaoMin, Zhao Lichen, Liu SHuangjin, “Titanium Alloy Production Technology, Market Prospects and industry developement ”, Materials and Design 32 (2011) 1684-1691
[DAV] J.R. Davis(EDs), “Metals handbook:Titanium and Titanium alloys”, Materials Park, Oh. : ASM International (1998), p. 575.
[DON] Matthew J. Donachie, JR., “Titanium and Titanium Alloys”, Metal Park, ASM International 1982, p.43.
[GUL] Hasan Guleryuz, Huseyin Cimenoglu, “Effect Of Thermal Oxidation On Corrosion And Corrosion–Wear Behaviour Of A Ti–6Al–4V Alloy”, Biomaterials 25 (2004) 3325–3333.
[GUN] Gunawarman, Mitsuo Niinomi, Kei-ichi Fukunaga, Daniel Eylon, Shiro Fujishiro, Chiaki Ouchi, “Fracture Characteristics And Microstructureal Factors In Single And Duplex Annealed Ti-4.5Al-3V-2Mo-2Fe”, Material Science & Engineering A308 (2001) 216-224.
[HAR] M.J.Harrigan, M.P. Kaplan, A.W. Sommer, “Effect of Chemistry and Heat Treatment on The Fracture Properties of Ti-6Al-4V Alloy”, Fracture Preventional and Control (1974) 225-254
[HIL] Robert E. Reed-Hill, Physical Metallurgy Principle, PWS Publishing Company (1994) p. 706.
[ISH] M. Ishikawa, O. Kuboyama, H. Niikura and C. Ouchi, in: F.H. Froes (Ed.), Titanium’92, science and technology, TMS, Warrendale, PA, USA (1992) 142–148
[JOV] M.T. Jovanovic’ *, S. Tadic’, S. Zec, Z. Misˇkovic’, I. Bobic,” The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti–6Al–4V alloy”, Materials and Design 27 (2006) 192–199
[LYA] V. S. Lyasotskaya, S. I. Knyazeva, “Metastable Phases In Titanium Alloys And Conditions Of Their Formation ”, Metal Science & Heat Treatment (2008) 373-377.
[MAS] Massalski, T.B.,Binary Alloy Phase Diagram , ASM (1986)
[MOR] M Morinaga, M. Kato, T. Kamimura, M. Fukumoto, I. Harada, K. Kubo,”Theoretical Design of β-Type Titanium Alloys”, Titanium ’92 Science and Technology (1992) Vol. 1, 217-224.
[OHM] Yasuya Ohmori , Toshitaka Ogo , Kiyomichi Nakai, Sengo Kobayashi, “Effects of ω-phase precipitation on β→α,α” transformations in a metastable β titanium alloy”, Materials Science and Engineering A312 (2001) 182–188
[OUC1] C. Ouchi, in: S. Fujishiro, D. Eyloy and T. Kishi (Eds.), Metallurgy and technology of practical titanium alloys, TMS, Warrendale,PA, USA, 1994, pp. 37–44
[OUC2] Chiaki Ouchi, Hideaki Fukai, Kohei Hasegawa, “Microstructural Characteristic And Unique Properties Obtained By Solution Treating Or Aging in β-rich α+β Titanium Alloy”, Material Science & Engineering A263 (1999) 132-136.
[POL] I.J.Polmear, Light Alloys Metallurgy of the Light Meral, forth edtion(2006) p.354
[SHA] W. Sha, Zhanli Guo, “Phase evolution of Ti–6Al–4V during continuous heating”, Journal of Alloys and Compounds 290 (1999) L3–L7
[TAY] Taylor Lyman Eds, Metals Handbook 8th edition, ASM,Vol.1 p.189
[WIL] J.C. Williams and J.J. Blackburn, Trans. ASM,Vol.60 (1967) p.381
[ZHA] ZHANG Gang, ZHANG Feng-shou, “Effect of heat treatment process on structures and properties of SP-700 Titanium Alloy”, The Chinese Journal of Nonferrous Metals (2010) Vol.20 , Special 1, s664-s669
指導教授 李勝隆(Sheng-long Lee) 審核日期 2012-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明