博碩士論文 993208007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:18.119.159.196
姓名 林武君(Wu-chun Lin)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 影像視覺追日偏差量測技術開發與追日太陽光電系統之實測
(Development of Measuring Sun-Tracking Deviation Technology with CCD Image and Field Test of Photovoltaic System)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微小圓管的層流及熱傳數值模擬★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應
★ 微管道電滲流物理特性之數值模擬★ 電滲泵內多孔介質微流場特性之數值模擬
★ 被動式微混合器之數值模擬★ 電滲泵的製作與性能測試
★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討★ 無動件式高流率電滲泵的製作與特性分析
★ 不同型式光纖與集光器搭配之效率測試★ 微電滲泵之暫態熱流研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文開發追日偏差角度量測方法,採用CCD攝影機做為量測設備,並以此設備分別在戶外實測二套閉迴路追日控制(億芳光感測器)與混合式追日控制(短路電流搭配太陽軌跡公式)的雙軸追日PV系統,監控數據包括追日偏差和PV電力性能。本文以LabVIEW開發影像處理演算法,影像處理目的在獲取目標物的輪廓,再根據輪廓尋找出目標物的質心位置,處理過程分為四個步驟:太陽影像擷取、影像二值化處理、去雜點處理與計算目標物質心位置。實測顯示分群二值化比固定閥值二值化更適合在光源多變的情況使用;本文亦比較重心法與邊緣檢測法對太陽影像形狀判讀的差異,晴天時兩者平均偏差角差異範圍介於0.008o~0.01o,多雲時則介於0.02o~0.05o,顯示邊緣檢測法即使太陽被雲層遮蔽仍不會影響其準確性,因此邊緣檢測法優於重心法。接著以PSD量測技術驗證CCD量測技術的可行性,前者具有高精度以及高傳輸速度特性,後者則可藉由影像處理修正太陽被雲層局部遮蔽的影像。
以CCD實地測試閉迴路追日控制與混合式追日控制,前者6天平均追日偏差為0.147o,平均輸出功率為1226 W(統計6天累計發電量為73.73 kWh),後者混合式追日控制5天平均追日偏差為1.291o,平均輸出功率為1291 W(統計6天累計發電量為68.9 kWh)。前者偏差角大都小於0.3o,後者的追日則主要依據短路電流偵測策略採用擾動方式,短路電流受到日照分布影響甚大、加上追蹤器受重力影響產生變形,導致以短路電流尋找到最大功率點的同時,追日精度不夠小以及實測天數有限(僅有完整六天實驗),因此偏差角分布範圍較廣達3.5o。還需再進一步長期監控PV電力表現才能全面評估短路電流追日方法的特性。雖然短路電流的追日精度不如億芳光感測器,但對PV系統而言,發電量才是決定系統性能的最終指標,因此混合式追日搭配短路電流方法仍為一實用且有效的追日方法。
摘要(英) This thesis developed an apparatus for measuring the offset angle of sun-tracking system with CCD camera and performed the outdoor tests of two photovoltaic (PV) systems which are controled by closed-loop and hybird sun-tracking (combine the detection of short-circuit current and sun-position calculation), respectivily. Monitoring data including offset angles and PV power performance.
CCD sensor is a discrete element structure based on the matrix elements to record images. This thesis used LabVIEW to develop an image processing algorithm to acquire the image profile, and then find out the centroid of image. Image processing consists of four parts: acquiring of sun images, image threshold processing, target filtering, and calculating centroid position.
Clustering-threshold method is better than the fixed-threshold binary approach in condition of varying light attenuation/scattering on outdoor testing. Comparing with centroid approach and edge-detection method for distinguishing sun images was carried out. On clear days, the average of offset angles ranging from 0.008o-0.01o, and values of 0.02o-0.05o was obtained on cloudy days. Results with the edge-detection method shown that in the case of cloud covering on sunlight wouldn’t degrade its accuracy. Thus the edge-detected method is better than the centroid method. Position sensitive device (PSD) technique is adopted to validate CCD technique for its applicability. The former has high accuracy and transmission, and the latter can correct local cloud covering on sunlight by image processing.
Field testing with CCD for monitoring the close-loop and hybrid sun-tracking found that the former has an average of offset angle of 0.147o on a six-day period and the average power output of 1226 W (total electricity on six days is 73.73 kWh). The hybrid sun-tracking has an average of offset angle of 1.291o on a five-day period, and the average power output of 1291 W (total electricity on six days is 68.9 kWh). Most of offset angles of the former are less than 0.3o. While the latter mainly using perturbation to detect the short-circuit current of PV module, which significantly being affected by solar radiation, deformed by gravity when finding maximum power point where offset angle is not small and limited test period (only full 6 days measurement). Thus the hybrid sun-tracking has large offset angles ranges up to 3.5o. Further long time monitoring of PV electrical performance is needed to fully assess the characteristics of sun-tracking based on short-circuit current. Although the short-circuit current tracking accuracy is less than the sun-tracking sensor, yet for assessing the performance of PV system, electricity is the ultimate factor. Thus, the hybrid sun-tracking with the short-circuit current algorithm is a practical and effective sun-tracking method.
關鍵字(中) ★ 追日偏差角度量測
★ 閉迴路追日控制
★ 混合式追日控制
★ 影像處理
關鍵字(英) ★ Closed-loop sun-tracking control
★ Image processing
★ PSD
★ Hybird sun-tracking control
★ CCD
★ Offset angle measurment
論文目次 中文摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 x
表目錄 xiv
符號說明 xv
第一章 緒論 1
1.1 前言 1
1.2 太陽光電系統 2
1.2.1 固定式系統 2
1.2.2 單軸追日系統 3
1.2.3 雙軸追日系統 4
1.3 研究動機 5
1.4 文獻回顧 6
1.5 論文架構 14
第二章 2 kW雙軸太陽光電系統 15
2.1 系統架構 15
2.2 太陽光電模組與雙軸太陽追蹤器 16
2.3 追日控制方法 17
2.3.1 開迴路追日控制 17
2.3.2 閉迴路追日控制 17
2.3.3 混合式追日控制 20
2.3.4 微型氣象站與電子水平儀 21
2.3.5 系統電力設備 24
第三章 追日精度量測技術開發與影像處理軟體 27
3.1 PSD與CCD追日偏差角度量測設備 27
3.1.1 追日偏差角度量測原理與控制箱體 27
3.1.2 位置感測器 29
3.1.3 電荷耦合元件 31
3.1.4 追日偏差數據轉換 33
3.2 影像處理軟體 35
3.2.1 數位影像擷取 35
3.2.2 影像二值化處理 35
第四章 實驗結果與分析 43
4.1 CCD追日精度量測設備實測 44
4.1.1 CCD控制箱戶外實測結果與修改 44
4.1.2 日照量與太陽影像關聯性分析 49
4.1.3 分群與固定閥值二值化 50
4.1.4 重心法與邊緣檢測法影像處理 51
4.1.5 CCD與PSD的安裝誤差對系統的影響 53
4.2 太陽光電系統實測 56
4.2.1 閉迴路追日控制 58
4.2.2 混合式追日控制 63
4.2.3 結果分析 67
第五章 結論與建議 69
5.1 結論 69
5.2 未來建議 70
參考文獻 71
參考文獻 行政院原子能委員會(2011),太陽光發電影像追蹤技術研發,委託研究報告。
陳宏鑫(2011),以PSD開發混合式追日控制與直射日照量測方法,國立中央大學能源工程研究所碩士論文。
曾英瑞(2011),高精度影像追蹤技術之研發應用於高聚光型太陽能供電系統,國立成功大學航空太空工程研究所碩士論文。
周建仁(2011),太陽電池短路電流法追日控制器之研發,國立中央大學機械工程研究所碩士論文。
劉智維(2010),以指向誤差修正技術應用在追日精度改進,國立中央大學能源工程研究所碩士論文。
陳麒峯(2010),追日偏差量測技術開發與聚光太陽光電系統之實測,國立中央大學能源工程研究所碩士論文。
張智凱(2008),被動式雙軸太陽追蹤器之追控系統開發,國立中央大學能源工程研究所碩士論文。
Arturo M.M. and Alejandro G.P (2010) “High–Precision Solar Tracking System,” Proceedings of the World Congress on Engineering 2010 Vol. II WCE 2010, June 30 – July 2, 2010, London, U.K.
BASLER (2011) “Scout users_manual,” BASLER.
Chong, K.K., Wong, C.W. (2009) “General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector,” Solar Energy 83:298–305.
Chong, K.K., Wong, C.W., Siaw, F.L., Yew, T.K., Ng, S.S., Liang, M.S., Lim, Y.S., and. Lau, S.L. (2009) “Integration of an on-axis general sun-tracking formula in the algorithm of an open-loop sun-tracking system,” Sensors 9:7849-7865.
Cucumo, M., Kaliakatsos, D., Marinelli, V. (1997) “General calculation methods for solar trajectories,” Renewable Energy 11:223-234.
Delta-T (2012) http://www.delta-t.co.uk/
DERlab (2011) “DERlab technical guidelines on long-term PV module outdoor test 100 – 01,” DERlab.
Donato V., Stefano B., Massimiliano O., Marco S., Antonio P., Giuliano M. (2010) “Measurement of sun-tracking accuracy and solar irradiance through multispectral imaging,” Optics for Solar Energy (OSE), Tucson, AZ, Solar Concentrator Characterization (STuA).
Davis, M., Lawler, J., Coyle, J., Reich, A., Williams, T. (2008) “Machine vision as a method for characterizing solar tracker performance,” GreenMountain Engineering, LLC, 33rd IEEE Photovoltaic Specialists Conference.
Duffie, J.A., Beckman, W.A. (2006) Solar Engineering of Thermal Processes, 4th Ed. New York: John Wiley & Sons.
Green M.A., Emery K., Hishikawa Y., Warta W., Dunlop E.D. (2011) “solar cell efficiency tables (version 38),” Prog. Photovolt: Res. Appl. 19:565-572.
Kelly N.A., Gibson T.L. (2011) “Increasing the solar photovoltaic energy capture on sunny and cloudy days,” Solar Energy 85:111–125.
Koussa M., Cheknane A., Hadji S., Haddadi M., Noureddine S. (2011) “Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions,” Applied Energy 88:1756–1771.
National Instruments (2007) “NI Vision Concepts Manual,” National Instruments.
Nijegorodov N., Devan K.R.S., Jain P.K., Carlsson S. (1994) “Atmospheric transmittance models and an analytical method to predict the optimum slope of an absorber plate, variously orientated at any latitude,” Renew Energy 4:529–43.
Reda, I., Andreas, A. (2008) “Solar position algorithm for solar radiation applications,” NREL/TP-560-34302.
Roth P., Georgiev A., Boudinov H. (2004) “Design and construction of a system for sun-tracking,” Renewable Energy 29: 393–402.
Thousand Oaks Optical (2012) http://www.thousandoaksoptical.com/index.html
指導教授 吳俊諆(Jiunn-Chi Wu) 審核日期 2012-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明