博碩士論文 993209012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.135.186.76
姓名 林正一(Jheng-Yi Lin)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 離子液體對材料的腐蝕性以及對鎂金屬表面處理的應用
(Corrosion Damage and Surface Treatments of Materials in Ionic Liquid Electrolytes)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 離子液體電解質應用於石墨烯超級電容之特性分析★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極
★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極★ 電解質添加劑對鋅二次電池陽極電化學性質的影響
★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究
★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究
★ 高濃度電解質於鋰電池知應用研究★ 熱解法製備硬碳材料應用於鈉離子電池負極
★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響★ 離子液體電解質於鈉離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究的第一部份針對鈦、304不銹鋼、碳鋼、銅、鎳、鋁、鎂於1- ethyl-3-methylimidazolium chloride aluminum chloride(EMIC-AlCl3)、1- ethyl-3-methylimidazolium chloride dicyanamide (EMI-DCA)、N-methyl-N-alkylpyrrolidinium dicyanamide (BMP-DCA)中的腐蝕行為進行探討,並比較不同陰陽離子對於材料於離子液體中的腐蝕行為之影響。研究結果顯示,不同陰離子對於材料於離子液體中的腐蝕行為影響較大。材料於相同陰離子的EMI-DCA與BMP-DCA中展現了相似的腐蝕行為。此外大多數材料於EMIC-AlCl3中的腐蝕電流較於EMI-DCA與BMP-DCA中大,故EMIC-AlCl3對材料的侵蝕性較EMI-DCA與BMP-DCA強。
本研究的第二部份也使用離子液體作為溶劑分別溶入數種金屬鹽,將鎂金屬浸泡於溶液中,於鎂金屬表面進行置換反應以提高鎂金屬的抗腐蝕能力。結果顯示藉由離子液體成功地將銅、鎳、鋅置換於鎂金屬表面。由吸收光譜結果可觀察到溶液中的金屬離子逐漸轉變為金屬,而將表面沖洗後分析結果也與純金屬相近,故實驗中藉由置換反應將純金屬置換於鎂金屬表面。置換反應完成後之鎂金屬於0.1 M Na2SO4中進行的動態電位極化曲線結果也指出,置換反應後腐蝕電位獲得改善。陽極區也產生鈍化現象,其中又以置換銅、鎳的抗腐蝕能力提升較為顯著。
摘要(英) In part one of this study, the corrosion behaviors of seven materials(titanium, 304 stainless steel, carbon steel, copper, nickel, aluminum, magnesium ) in three different ionic liquids including 1- ethyl-3-methylimidazolium chloride aluminum chloride(EMIC-AlCl3), 1- ethyl-3-methylimidazolium chloride dicyanamide (EMI-DCA), and N-methyl-N-alkylpyrrolidinium dicyanamide (BMP-DCA) have been investigated to know the effect of different cation and anion. The results indicate that the corrosion behaviors of these materials are similar in ionic liquids (EMI-DCA, BMP-DCA) with the same anion. Furthermore, most of materials have higher corrosion current in EMIC-AlCl3 than in EMI-DCA or BMP-DCA.
This investigation uses ionic liquid with many kind metallic ions to make replacement with magnesium. Replacing metal on Mg surface helps improving corrosion resistance. The results show copper, nickel, zinc could be reduced on magnesium surface by replacement reaction. In X-ray Absorption Spectroscopy, the energy peaks shifted toward lower photo energy during replacement processes by transformation from metal ions to pure metal. After cleaning the sample surface, the analytical results of the sample surface are similar with the results of pure metals. Potentiodynamic polarization results indicate that the corrosion resistance of Mg samples has been improved after replacing treatment. The results show extraordinary passivation when replace copper and nickel on magnesium surface.
關鍵字(中) ★ 離子液體
★ 鎂
★ 腐蝕行為
★ 置換反應
關鍵字(英) ★ magnesium
★ replacement reaction
★ corrosion behavior
★ ionic liquid
論文目次 摘要 I
Abstract II
誌謝 III
表目錄 VI
圖目錄 VII
一、前言 1
二、研究背景與文獻回顧 2
2-1離子液體 2
2-2材料於離子液體中之腐蝕相關研究 4
2-2-1離子液體作為腐蝕抑制劑 4
2-2-2離子液體與材料腐蝕行為 5
2-3鎂合金與其應用 8
2-3-1傳統表面處理法 8
2-3-2離子液體於表面處理之應用 9
2-4無電鍍法 10
2-5置換反應 11
三、實驗方法與步驟 23
3-1 材料於離子液體之腐蝕行為 23
3-1-1 實驗材料 23
3-1-2 離子液體 23
3-1-3電化學測試 24
3-2於鎂金屬表面置換金屬 26
3-2-1 離子液體與試片準備 26
3-2-2 電化學測試 26
3-2-3 材料分析 26
四、 結果與討論 29
4-1材料於離子液體中之腐蝕行為 29
4-1-1 材料於於開路狀態下之腐蝕行為 29
4-1-2 材料於極化狀態下的腐蝕行為 30
4-2 以置換反應提高純鎂抗蝕能力 45
4-2-1開路電位分析 45
4-2-2 X光繞射分析 46
4-2-3掃描式電子顯微鏡分析 46
4-2-4吸收光譜分析 46
4-2-5抗蝕性分析 48
五、 結論 60
六、未來研究工作 61
參考文獻 62
參考文獻 1. Perissi, I., U. Bardi, S. Caporali, and A. Lavacchi, High temperature corrosion properties of ionic liquids. Corrosion Science, 2006. 48(9): p.2349-2362.
2. Ue, M., M. Takeda, A. Toriumi, A. Kominato, R. Hagiwara, and Y. Ito, Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors. Journal of The Electrochemical Society, 2003. 150(4): p.A499-A502.
3. Guerfi, A., S. Duchesne, Y. Kobayashi, A. Vijh, and K. Zaghib, LiFePO4 and graphite electrodes with ionic liquids based on bis(fluorosulfonyl)imide (FSI)− for Li-ion batteries. Journal of Power Sources, 2008. 175(2): p. 866-873.
4. Plechkova, N.V. and K.R. Seddon, Applications of ionic liquids in the chemical industry. Chem Soc Rev, 2008. 37(1): p. 123-50.
5. Wilkes, J.S. and M.J. Zaworotko, Air and water stable
1-ethyl-3-methylimidazolium based ionic liquids. Journal of the Chemical Society, Chemical Communications, 1992(13): p. 965.
6. Sakaebe, H., H. Matsumoto, and K. Tatsumi, Application of room temperature ionic liquids to Li batteries. Electrochimica Acta, 2007. 53(3): p. 1048-1054.
7. Seki, S., Y. Kobayashi, H. Miyashiro, Y. Ohno, A. Usami, Y. Mita, N. Kihira, M. Watanabe, and N. Terada, Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid. Journal of Physical Chemistry B, 2006. 110(21): p. 10228-10230.
8. Nanjundiah, C., S.F. McDevitt, and V.R. Koch, Differential capacitance measurements in solvent-free ionic liquids at Hg and C interfaces. Journal of The electrochemical Society, 1997. 144(10): p. 3392-3397.
9. Balducci, A., U. Bardi, S. Caporali, M. Mastragostino, and F. Soavi, Ionic liquids for hybrid supercapacitors. Electrochemistry Communications, 2004. 6(6): p. 566-570.
10. Chang, J.K., M.T. Lee, C.W. Cheng, W.T. Tsai, M.J. Deng, Y.C. Hsieh, and I.W. Sun, Pseudocapacitive behavior of Mn oxide in aprotic 1-ethyl-3-methylimidazolium-dicyanamide ionic liquid. Journal of Materials Chemistry, 2009. 19(22): p. 3732-3738.
11. Wang, P., S.M. Zakeeruddin, J.E. Moser, and M. Gratzel, A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells. Journal of Physical Chemistry B, 2003. 107(48): p. 63 13280-13285.
12. Kawano, R., H. Matsui, C. Matsuyama, A. Sato, M.A.B.H. Susan, N. Tanabe, and M. Watanabe, High performance dye-sensitized solar cells using ionic liquids as their electrolytes. Journal of Photochemistry and Photobiology a-Chemistry, 2004. 164(1-3): p. 87-92.
13. Gasparac, R., C.R. Martin, E. Stupnisek-Lisac, and Z. Mandic, In situ and ex situ studies of imidazole and its derivatives as copper corrosion inhibitors II. AC impedance, XPS, and SIMS studies. Journal of The Electrochemical Society, 2000. 147(3): p. 991-998.
14. Quraishi, M.A., M.Z.A. Rafiquee, S. Khan, and N. Saxena, Corrosion inhibition of aluminium in acid solutions by some imidazoline derivatives. Journal of Applied Electrochemistry, 2007. 37(10): p. 1153-1162.
15. Q.B., Z. and Y.X. Hua, Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid. Electrochimica Acta, 2009. 54: p. 1881-1887.
16. H., A.-S. and E.h. M., Corrosion inhibition of mild steel in acidic media by [BMIm]Br Ionic liquid. Materials Chemistry and Physics, 2009. 114: p. 267-271.
17. Tunc, T., D. Filiz, K. Nur, S.ı. Gokmen, and E. Mehmet, Inhibition effect of 1-ethyl-3-methylimidazolium dicyanamide against steel corrosion. Corrosion Science, 2012. 59: p. 110-118.
18. Diego, G.-L., O.-X. Octavio, M.-P. Rafael, L.N. V., A.D.-A. Marco, and G.-F. Vicente, Synthesis of selected vinylimidazolium ionic liquids and their effectiveness as corrosion inhibitors for carbon steel in aqueous sulfuric acid. Industrial & Engineering Chemistry Research, 2011. 50: p. 7129-7140.
19. Zhao, Z., Y.W. Shao, T.M. Wang, D.P. Feng, and W.M. Liu, Study on corrosion property of a series of hexafluorophosphate ionic liquids on steel surface. Corrosion Engineering, Science and Technology, 2011. 46(4): p. 330-333.
20. Zhou, X., H. Yang, and F. Wang, [BMIM]BF4 ionic liquids as effective inhibitor for carbon steel in alkaline chloride solution. Electrochimica Acta, 2011. 56(11): p. 4268-4275.
21. Uerdingen, M., C. Treber, M. Balser, G. Schmitt, and C. Werner, Corrosion behaviour of ionic liquids. Green Chemistry, 2005. 7(5): p. 321.
22. Arenas, M.F. and R.G. Reddy, Corrosion of steel in ionic liquid. Journal of Mining and Metallurgy, 2003. 30((1-2)B): p. 81-91. 64
23. Perissi, I., U. Bardi, S. Caporali, A. Fossati, and A. Lavacchi, Ionic liquids as diathermic fluids for solar trough collectors’ technology: A corrosion study. Solar Energy Materials and Solar Cells, 2008. 92(4): p. 510-517.
24. Tseng, C.-H., J.-K. Chang, J.-R. Chen, W.T. Tsai, M.-J. Deng, and I.W. Sun, Corrosion behaviors of materials in aluminum chloride–1-ethyl-3-methylimidazolium chloride ionic liquid. Electrochemistry Communications, 2010. 12(8): p. 1091-1094.
25. Lin, P.-C., I.W. Sun, J.-K. Chang, C.-J. Su, and J.-C. Lin, Corrosion characteristics of nickel, copper, and stainless steel in a Lewis neutral chloroaluminate ionic liquid. Corrosion Science, 2011. 53(12): p. 4318-4323.
26. Montemor, M.F., A.M. Simoes, and M.J. Carmezim, Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection. Applied Surface Science, 2007. 253(16): p. 6922-6931.
27. Kouisni, L., M. Azzi, F. Dalard, and S. Maximovitch, Phosphate coatings on magnesium alloy AM60. Surface and Coatings Technology, 2005. 192(2-3): p. 239-246.
28. Andriyko, Y., A. Andriiko, O.B. Babushkina, and G.E. Nauer, Electrochemistry of TiF4 in 1-butyl-2,3-dimethylimidazolium tetrafluoroborate. Electrochimica Acta, 2010. 55(3): p. 1081-1089.
29. Deng, M.-J., P.-C. Lin, J.-K. Chang, J.-M. Chen, and K.-T. Lu, Electrochemistry of Zn(II)/Zn on Mg alloy from the
N-butyl-N-methylpyrrolidinium dicyanamide ionic liquid. Electrochimica Acta, 2011. 56(17): p. 6071-6077.
30. Abbott, A.P., K. El Ttaib, G. Frisch, K.J. McKenzie, and K.S. Ryder, Electrodeposition of copper composites from deep eutectic solvents based on choline chloride. Phys Chem Chem Phys, 2009. 11(21): p. 4269-77.
31. Bakkar, A. and V. Neubert, Electrodeposition onto magnesium in air and water stable ionic liquids: From corrosion to successful plating. Electrochemistry Communications, 2007. 9(9): p. 2428-2435.
32. Endres, F., S. Zein El Abedin, A.Y. Saad, E.M. Moustafa, N. Borissenko, W.E. Price, G.G. Wallace, D.R. MacFarlane, P.J. Newman, and A. Bund, On the electrodeposition of titanium in ionic liquids. Phys Chem Chem Phys, 2008. 10(16): p. 2189-99.
33. Abbott, A.P., K. El Ttaib, K.S. Ryder, and E.L. Smith, Electrodeposition of nickel using eutectic based ionic liquids. Transactions of the Institute of Metal Finishing, 2008. 86(4): p. 234-240. 65
34. Leong, T.-I., I.W. Sun, M.-J. Deng, C.-M. Wu, and P.-Y. Chen, Electrochemical study of copper in the 1-ethyl-3-methylimidazolium dicyanamide room temperature ionic liquid. Journal of The Electrochemical Society, 2008. 155(4): p. F55.
35. Deng, M.-J., P.-Y. Chen, T.-I. Leong, I.W. Sun, J.-K. Chang, and W.-T. Tsai, Dicyanamide anion based ionic liquids for electrodeposition of metals. Electrochemistry Communications, 2008. 10(2): p. 213-216.
36. Abbott, A.P. and K.J. McKenzie, Application of ionic liquids to the electrodeposition of metals. Phys Chem Chem Phys, 2006. 8(37): p. 4265-79.
37. Endres, F. and S. Zein El Abedin, Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys, 2006. 8(18): p. 2101-16.
38. Chen, Q., D.-q. Tan, R. Liu, and W.-x. Li, Study on electrodeposition of Al on W–Cu substrate in AlCl3+LiAlH4 solutions. Surface and Coatings Technology, 2011. 205(19): p. 4418-4424.
39. Jiang, T., M.J. Chollier Brym, G. Dube, A. Lasia, and G.M. Brisard, Electrodeposition of aluminium from ionic liquids: Part I—electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids. Surface and Coatings Technology, 2006. 201(1-2): p. 1-9.
40. Survilienė, S., S. Eugenio, and R. Vilar, Chromium electrodeposition from [BMIm][BF4] ionic liquid. Journal of Applied Electrochemistry, 2010. 41(1): p. 107-114.
41. Zein El Abedin, S., U. Welz-Biermann, and F. Endres, A study on the electrodeposition of tantalum on NiTi alloy in an ionic liquid and corrosion behaviour of the coated alloy. Electrochemistry Communications, 2005. 7(9): p. 941-946.
42. Chang, J.-K., S.-Y. Chen, W.-T. Tsai, M.-J. Deng, and I.W. Sun, Electrodeposition of aluminum on magnesium alloy in aluminum chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid and its corrosion behavior. Electrochemistry Communications, 2007. 9(7): p. 1602-1606.
43. Chang, J.-K., S.-Y. Chen, W.-T. Tsai, M.-J. Deng, and I.W. Sun, Improved corrosion resistance of magnesium alloy with a surface aluminum coating electrodeposited in ionic liquid. Journal of The Electrochemical Society, 2008. 155(3): p. C112.
44. J.-K., C., S. I.-W., P. S.-J., C. M.-H., D. M.-J., and T. W.-T., 66 Electrodeposition of Al coating on Mg alloy. Transactions of the Institute of Metal Finishing, 2008. 86(4): p. 227-233.
45. Chuang, M.-H., J.-K. Chang, P.-J. Tsai, W.-T. Tsai, M.-J. Deng, and I.W. Sun, Heat-treatment induced material property variations of Al-coated Mg alloy prepared in aluminum chloride/1-ethyl-3-methylimidazolium chloride ionic liquid. Surface and Coatings Technology, 2010. 205(1): p.
200-204.
46. Pan, S.-J., W.-T. Tsai, J.-K. Chang, and I.W. Sun, Co-deposition of Al–Zn on AZ91D magnesium alloy in AlCl3–1-ethyl-3-methylimidazolium chloride ionic liquid. Electrochimica Acta, 2010. 55(6): p. 2158-2162.
47. Pan, S.-J., W.-T. Tsai, and I.W. Sun, Electrodeposition of Al–Zn on Magnesium Alloy from ZnCl[sub 2]-Containing Ionic Liquids. Electrochemical and Solid-State Letters, 2010. 13(9): p. D69.
48. Yang, H., X. Guo, G. Wu, W. Ding, and N. Birbilis, Electrodeposition of chemically and mechanically protective Al-coatings on AZ91D Mg alloy. Corrosion Science, 2011. 53(1): p. 381-387.
49. Bermudez, M.-D., A.-E. Jimenez, and G. Martinez-Nicolas, Study of surface interactions of ionic liquids with aluminium alloys in corrosion and erosion–corrosion processes. Applied Surface Science, 2007. 253(17):
p. 7295-7302.
50. Birbilis, N., P.C. Howlett, D.R. MacFarlane, and M. Forsyth, Exploring corrosion protection of Mg via ionic liquid pretreatment. Surface and Coatings Technology, 2007. 201(8): p. 4496-4504.
51. Forsyth, M., P.C. Howlett, S.K. Tan, D.R. MacFarlane, and N. Birbilis, An ionic liquid surface treatment for corrosion protection of magnesium alloy AZ31. Electrochemical and Solid-State Letters, 2006. 9(11): p. B52.
52. Caporali, S., F. Ghezzi, A. Giorgetti, A. Lavacchi, A. Tolstogouzov, and U. Bardi, Interaction between an imidazolium based ionic liquid and the AZ91D magnesium alloy. Advanced Engineering Materials, 2007. 9(3): p.
185-190.
53. Forsyth, M., W.C. Neil, P.C. Howlett, D.R. Macfarlane, B.R. Hinton, N. Rocher, T.F. Kemp, and M.E. Smith, New insights into the fundamental chemical nature of ionic liquid film formation on magnesium alloy surfaces. ACS Appl Mater Interfaces, 2009. 1(5): p. 1045-52.
54. Howlett, P.C., J. Efthimiadis, P. Hale, G.A. van Riessen, D.R. MacFarlane, and M. Forsyth, Characterization of the magnesium alloy AZ31 surface in the ionic liquid trihexyl(tetradecyl)phosphonium bis(trifluoromethanesulfonyl)amide. Journal of The Electrochemical 67 Society, 2010. 157(11): p. C392.
55. Howlett, P.C., T. Khoo, G. Mooketsi, J. Efthimiadis, D.R. MacFarlane, and M. Forsyth, The effect of potential bias on the formation of ionic liquid generated surface films on Mg alloys. Electrochimica Acta, 2010. 55(7): p. 2377-2383.
56. Koura, N., H. Nagase, A. Sato, S. Kumakura, K. Takeuchi, K. Ui, T. Tsuda, and C.K. Loong, Electroless plating of aluminum from a room-temperature ionic liquid electrolyte. Journal of The Electrochemical Society, 2008. 155(2): p. D155-D157.
57. Shitanda, I., A. Sato, M. Itagaki, K. Watanabe, and N. Koura, Electroless plating of aluminum using diisobutyl aluminum hydride as liquid reducing agent in room-temperature ionic liquid. Electrochimica Acta, 2009.
54(24): p. 5889-5893.
58. Abbott, A.P., J. Griffith, S. Nandhra, C. O’’Connor, S. Postlethwaite, K.S. Ryder, and E.L. Smith, Sustained electroless deposition of metallic silver from a choline chloride-based ionic liquid. Surface and Coatings
Technology, 2008. 202(10): p. 2033-2039.
59. Abbott, A.P., K.S. Ryder, and U. Konig, electrofinishing of metals using eutectic based ionic liquids. Transactions of the Institute of Metal Finishing, 2008. 86(4): p. 196-204.
60. Abbott, A.P., S. Nandhra, S. Postlethwaite, E.L. Smith, and K.S. Ryder, Electroless deposition of metallic silver from a choline chloride-based ionic liquid: a study using acoustic impedance spectroscopy, SEM and atomic force microscopy. Phys Chem Chem Phys, 2007. 9(28): p. 3735-43.
61. Takano, N., N. Hosoda, T. Yamada, and T. Osaka, Mechanism of the chemical deposition of nickel on silicon wafers in aqueous solution. Journal of The Electrochemical Society, 1999. 146(4): p. 1407-1411.
62. Pearson, A., A.P. O’’Mullane, V. Bansal, and S.K. Bhargava, Galvanic replacement mediated transformation of Ag nanospheres into dendritic Au-Ag nanostructures in the ionic liquid [BMIM][BF4]. Chem Commun (Camb), 2010. 46(5): p. 731-3.
63. 蔡幸甫, 輕金屬產業的發展趨勢. 2000.
64. R., D., Handbook of chemistry and physics.
指導教授 張仍奎(Jeng-Kuei Chang) 審核日期 2012-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明