參考文獻 |
參考資料
1. William Shockley and Hans J. Queisser, “Detailed Balance Limit of Efficiency of pn Junction Solar Cells”, J. Appl. Phys., 32, (1961), 510.
2. D. M. Chapin, et al. “A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys., 25, (1954), 676.
3. Martin A. Green, “Third generation photovoltaics: solar cells for 2020 and beyond”, Physica E, 14, (2002), 65.
4. Martin A. Green, et al. Fangsuwannarak, T., Puzzer, T., Conibeer, G. and Corkish, R., “ALL-SILICON TANDEM CELLS BASED ON “ARTIFICIAL” SEMICONDUCTOR SYNTHESISED USING SILICON QUANTUM DOTS IN A DIELECTRIC MATRIX”, 20th European Photovoltaic Solar Energy Conference, 6, Barcelona, Spain, June 2005.
5. D.J. Lockwood, et al. Silicon Photonics II. Topics in Applied Physics, 119, (2011), 131.
6. Andreas W. Bett, et al. “HIGHEST EFFICIENCY MULTI-JUNCTION CELL FOR TERRESTRIAL AND SPACE APPLICATIONS”, 24th European Photovoltaic Solar Energy Conference and Exhibition, 21, Hamburg, Germany, September 2009.
7. G. Conibeer, et al. “Silicon quantum dot nanostructures for tandem photovoltaic cells”, Thin Solid Films, 516, (2008), 6748.
8. Michael J Burns and Paul M Chaikin, “Interaction effects and thermoelectric power in low-temperature hopping”, J. Phys. C: Solid State Phys. 18 (1985) L74.
9. P. F. Trwoga, et al. “Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters”, J. Appl. Phys., 83, (1998), 3789.
10. A. D. Yoffe, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems, Adv. Phys., 42, (1993), 173.
11. L. E. Brus, “Electron–electron and electronhole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state”, J. Chem. Phys., 80, (1984), 4403.
12. Tae-Wook Kim, et al. “Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3”, Appl. Phys. Lett., 88, (2006), 123102.
13. Shinji Takeoka, et al. “Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime”, Phys. Rev. B , 62, (2000), 16820.
14. Tae-Youb Kim, et al. “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films”, Appl. Phys. Lett., 85, (2004), 5355.
15. Moon-Seung Yang, et al. “Effect of nitride passivation on the visible photoluminescence from Sinanocrystals”, Appl. Phys. Lett., 85, (2004), 3408.
16. W. Boonkosum, et al. “Amorphous SiO:H thin film visible light emitting diode”, J. Non-Cryst. Solids, 198, (1996), 1226.
17. L. Pavesi, et al. “Optical gain in silicon nanocrystals”, NATURE, 408, (2000), 440.
18. Sandip Tiwari, et al. “A silicon nanocrystals based memory”, Appl. Phys. Lett., 68, (1996), 1377.
19. L.A. Nesbit, “Annealing characteristics of Si-rich SiO2 films”, Appl. Phys. Lett., 46, (1985), 38.
20. J. F. Tong, et al. “Adjustable emissions from silicon-rich oxide films prepared by plasma-enhanced chemical-vapor deposition”, Appl. Phys. Lett., 74, (1999), 2316.
21. Gustavo M. Dalpian and James R. Chelikowsky, “Self-Purification in Semiconductor Nanocrystals”, Phys. Rev. Lett., 96, (22006), 226802.
22. G. Cantele, et al. “First-principles study of n- and p-doped silicon nanoclusters”, Phys. Rev. B , 72, (2005), 113303.
23. David J. Norris et al. “Doped Nanocrystals”, Science, 319, (2008), 1776.
24. Young Suk Kim, et al. “Effects of N2 plasma treatment of titanium nitride/borophosphosilicate glass patterned substrates on metal organic chemical vapor deposition of copper”, Thin Solid Films, 349, (1999), 36.
25. Eun-Chel Cho, et al. “Silicon quantum dot/crystalline silicon solar cells”, Nanotechnology., 19, (2008), 245201.
26. X.J. Hao, et al. “Phosphorus-doped silicon quantum dots for all-silicon quantum dot tandem solar cells”, Solar Energy Materials & Solar Cells, 93, (2009), 1524.
27. X. D. Pi, et al. “Light emission from Si nanoclusters formed at low temperatures”, Appl. Phys. Lett., 88, (2006), 103111.
28. Tsutomu Shimizu-Iwayama, et al. “Optical properties of silicon nanoclusters fabricated by ion implantation”, J. Appl. Phys., 83, (1998), 6018.
29. Z. H. Cen, et al. “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions”, Appl. Phys. Lett., 94, (2009), 041102.
30. Z. H. Cen, et al. “Annealing effect on the optical properties of implanted silicon in a silicon nitride matrix”, Appl. Phys. Lett., 93, (2008), 023122.
31. A. Hofgen, et al. “Annealing and recrystallization of amorphous silicon carbide produced by ion implantation”, J. Appl. Phys., 84, (1998), 4769.
32. N.M. Park, et al. “Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride”, Phys. Rev. Lett., 86, (2001), 1355.
33. A. Sa’ar, et al. “Resonant Coupling between Surface Vibrations and Electronic States in Silicon Nanocrystals at the Strong Confinement Regime”, 5, (2005), 2443.
34. Z.H. Lu, et al. “Quantum confinement and light emission in SiO2/Si superlattices”, Nature, 378, (1995), 258.
35. Jian Zi, rt al. “Raman shifts in Si nanocrystals”, Appl. Phys. Lett., 69, (1996), 200.
36. X.J. Hao, et al.” Effects of phosphorus doping on structural and optical properties of silicon nanocrystals in a SiO2 matrix”, Thin Solid Films, 517, (2009), 5646.
|