博碩士論文 943403050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:84 、訪客IP:3.137.41.153
姓名 陳俊宏(Chun-Hung Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 泡生法生長氧化鋁單晶之數值模擬分析
(Numerical simulation for sapphire single crystal growth by the Kyropoulos method)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 晶體生長是一項重要的技術,尤其是泡生法(Kyropoulos)這種主要應用在工業上生長大型晶體的低溫度梯度法。對於這種生長大尺寸晶體,且處於高溫無法直接觀測的生長法,必須使用數值模擬的方式獲得初始的基本資料,以減少實驗所耗費的時間與成本。因為泡生法主要是調整加熱功率與取熱大小來控制整個晶體生長的過程,因此晶體生長爐所提供的加熱器設計、熱場設計與通水取熱方式的設計等熱流控制問題對於生長品質優良之藍寶石單晶來說相當重要。為了確保生長藍寶石單晶的品質,本文須掌握坩堝內之生長情況,因此使用模擬的方法對坩堝內之情形加以分析,以獲得各項熱流場分佈情形資訊。
本研究本文選用以有限元素法(FEM)為基礎的套裝軟體 COMSOL Multiphysics,進行模擬分析工作。在模擬研究的初期,本文使用準穩態的方式針對鳥籠式加熱器系統生長氧化鋁單晶過程之熱流場、固液界面形狀與晶體外形分佈作深入的研究。結果發現晶體生長過程中,溫度場會受到浮力作用影響而扭曲變形;熔湯內經過設計只有一個渦漩;固液界面形狀會越來越凸向熔湯,待固液界面尾端接近坩堝底部時,因為固液界面形狀變平坦而使凸出長度開始下降,模擬完成之晶體與工業上實際長晶之梨子狀相似。之後本文亦針對分段加熱器的調整對晶體形狀、固液界面形狀、固液界面溫度梯度與晶體熱流場分佈的影響,而針對結果做了修正,得到當加熱器的加熱功率比率為1.3:1:0.8為初始時,亦即上加熱器比中加熱器功率高,固定其他兩個加熱器只調降上加熱器,可獲得比較接近等直徑的晶體,且晶體的溫度梯度最小。並且分析了晶體內部非等向熱應力分佈情況,在本文所模擬的低溫梯系統中,熱應力分佈會呈現幾乎軸對稱的效果,而非等向的效果並不顯著。本研究針對複雜之KY法藍寶石晶體生長系統簡化分析,可提供模擬之數值結果供實際長晶做為參考。
摘要(英) The Kyropoulos method is the low temperature gradient technology and mainly used in industrial growth of large size sapphire crystals. During the large size sapphire crystal growth, the Kyropoulos (KY) furnace has high temperature and can not be directly observed. It must use the numerical simulations to obtain the growth data and conditions to reduce the cost and paste of experiments. The Kyropoulos method must reduce the power history and control the water cooling rate to get the high quality sapphire single crystal. In this study, the governing equations are solved numerically using the COMSOL Multiphysics software based on the finite-element method and the quasi-steady state approximation in the present study. The results show that the isotherms are distorted by the strong buoyancy force and it has only one vortex in the melt and higher convexity of crystal-melt interface. The convexity decreases when the crystal-melt interface is closed to the bottom of the crucible since the interface shape becomes flattened. The crystal shape is pear-liked as the industrial experiment. Then we have used the different power arrangements in a three-zone resistance heated KY furnace to calculate the crystal shape, solid-liquid interface shape, temperature gradient and heat and flow distributions. The power ratio was maintained at a constant during the growth process. The power ratio of zone A: zone B: zone C equal to 1.3:1:0.8 has a lower power and temperature gradient along the crystallization front, but the remelting phenomenon may occur in the middle stages during the growth process. Then this case is selected, and the power of zone A decreases with the power of zone B and zone C being fixed during the growth. The results show that it has the lowest temperature gradient along the crystallization front and the crystal diameter after crown growth is almost constant. The thermal stress distribution during the growth has been computed. It is almost axisymmetric. Therefore, the effect of anisotropic structure of the sapphire crystal on the thermal stress distribution may be insignificant due to the lower temperature gradient inside the sapphire single crystal.
關鍵字(中) ★ 熱傳
★ 晶體生長
★ 泡生法
★ 數值模擬
★ 藍寶石晶體
關鍵字(英) ★ Heat transfer
★ Numerical simulation
★ Crystal growth
★ Kyropoulos
★ Sapphire
論文目次 目錄
摘要 I
ABSTRACT II
目錄 IV
圖目錄 VI
表目錄 IX
符號說明 X
第一章 緒論 1
1.1 前言 1
1.2 藍寶石晶體介紹 1
1.3 晶體生長法介紹 3
1.4 文獻探討 6
1.5 研究動機與目的 10
第二章 系統描述與數學模式 16
2.1物理系統與假設 16
2.2 KY爐之數學模式 17
2.2.1 熱流場方程式 17
2.2.2 熱應力場方程式 21
第三章 數值方法 26
3.1 COMSOL MULTIPHYSICS軟體介紹 26
3.2 形狀函數 27
3.3 流場型態判別 28
3.4 網格測試與收斂測試 28
3.5 固化理論分析 29
3.6 求解分析步驟 30
3.7 模擬的項目 30
第四章 結果與討論 37
4.1 鳥籠式加熱KY爐之晶體生長過程 37
4.2 分段式加熱KY爐之晶體生長過程 40
4.3 晶體非等向熱應力分析 43
第五章 結論 73
參考文獻 76
參考文獻 1. C.M. Liu, J.C. Chen, Y.C. Huang, H.L. Hsieh “The morphology of etch pits on a sapphire surface”, Journal of Physics and Chemistry of Solids, 69, P572–575, 2008.
2. H. Tan, A. Gilbertson and S. Y. Chou, “Roller nanoimprint lithograp hy”, Journal of Vacuum Science and Technology-Section B-Microel ectronics Nanometer Structure, 16, P3926, 1998.
3. J. Guo, D.E. Ellis, D.J. Lam, “First principle calculation of the electronic structure of sapphire:Bulk states”, Physical Review B, 45, P3204, 1992.
4. D.C. Harris, F. Schmid, D. R. Black, E. Savrun, H.E. Bates, “Factors that influence mechanical failure of sapphire at hightemperature,” SPIE, Vol.3060, P226-235, 1997.
5. D.C. Harris, F. Schmid, J.J. Mecholsky, Y.L. Tsai, “Mechanism of MechanicalFailure of Sapphire at High Temperature”, SPIE, Vol.2286, P16-25, 1994.
6. 劉國雄, 林樹均, 李勝隆, 鄭晃忠, 葉均為, 工程材料科學, P44, ISBN 957-21-0830-1, 1996.
7. 呂中偉,「以熱交換器法生長氧化鋁單晶之模擬分析」,國立中央大學機械工程研究所,博士論文,民國91年7月.
8. CW Mueller, PH. Robinson, “Mueller CW, Robinson PH., Proc IEEE, 52, P1487, 1964.”, Proc IEEE, 52, P1487, 1964.
9. M.S. Akselrod, F.J. Bruni, “Modern trends in crystal growth and new applications of sapphire”, Journal of Crystal Growth, 2012.
10. W. Zulehner, “Czochralski Growth of silicon”, Journal of Crystal Growth, 65, P189, 1983.
11. H.J. Scheel, “Historical aspects of crystal growth technology”, Journal of Crystal Growth, 211, P1-12, 2000.
12. H.E. LaBelle, Mater. Res. Bull., 6, P581, 1971.
13. H.J. Scheel, T. Fukuda, “The Development of Crystal Growth Technology ” ,Crystal Growth Technology, P3-14, 2003.
14. C.W. Lu, J.C. Chen, “Numerical computation of sapphire crystal growth using heat exchanger method”, J. Cryst. Growth, 225, P274, 2001.
15. J.C. Chen, C.W. Lu, “Influence of the crucible geometry on the shape of the melt– crystal interface during growth of sapphire crystal using a heat exchanger method”, J. Cryst. Growth, 266, P239, 2004.
16. C.W. Lu, J.C. Chen, “A numerical investigation of the thermal distribution effects in a heat-exchanger-method crystal growth system”, Model. Simul. Mater. Sci. Eng. 10, P147, 2002.
17. M.H. Tavakoli and H. Wilke, “Numerical study of induction heating and heat transfer in a real Czochralski system”, J. Cryst. Growth, P85, 2005.
18. M.H. Tavakoli and H. Wilke, “Numerical study of heat transport and fluid flow of melt and as during the seeding process of sapphire Czochralski crystal growth”, Cryst. Growth Des., 7, P644, 2007.
19. M.H. Tavakoli, H. Wilke, “Numerical study of heat transport and fluid flow during different stages of sapphire Czochralski crystal growth”, J. Cryst. Growth, 310, P3107, 2008.
20. 陳建宏,「柴式法生長氧化鋁單晶過程最佳化熱流場之分析」,國立中央大學,碩士論文,民國97年。
21. C.W. Lu, J.C. Chen, C.H. Chen, C.H. Chen, W.H. Hsu, C.M. Liu, “Effects of RF coil position on the transport processes during the stages of sapphire Czochralski crystal growth”, J. Cryst. Growth, 312, P1074, 2010.
22. C.W. Lu, J.C. Chen, “Numerical simulation of thermal and mass transport during Czochralski crystal growth of sapphire”, Cryst. Res. Technol., 45, P371, 2010.
23. Kyropoulos S 1926Z. Anorg. Chem.154308
24. E.R. Dobrovinskaya, L.A. Lytvynov, V. Pishchik, Sapphire: Materials, Manufacturing, Applications., Springer, P3, 2009.
25. M.I. Musatov, Heat-Resistant Dielectrics. Atomizdat, Moscow., PP117 – 118, Russian, 1980.
26. M.I .Musatov, Book of Lectures of 1st International. School on Crystal Growth Technolog, Switzerland., P624, 1998.
27. 李宏凱,「利用Kyropoulos方法生長藍寶石單品之研究」,中華技術學院,碩士論文,民國95年。
28. 侯帝光,「製程參數對藍寶石單晶品質之研究」,中華技術學院,碩士論文,民國98年。
29. 許承海,孟松鹤,韓杰才,左洪波,張明福,汪桂根,G. Benik,「散熱參數對冷心放肩微量提拉法生長藍寶石晶體影響的數值模擬」,矽酸鹽通報,第25卷第6期,56-61頁,2006年。
30. 姚泰, 左洪波, 孟松鹤, 韓杰才, 張明福, 李常青, 許承海, 「SAPMAC法生長大尺寸藍寶石單晶工藝研究」, 哈爾濱工業大學學報, 第19卷第5期, 2007。
31. 許承海, 杜善義, 孟松鹤, 韓杰才, 汪桂根, 左洪波, 張明福, 「藍寶石晶體熱性能的各向異性對SAPMAC法晶體生長的影響」, 哈爾濱工業大學學報, 第36卷第6期, 2007。
32. 許承海, 張明福, 孟松鹤, 左洪波, 韓杰才, 「藍寶石熱物性能對SAPMAC法晶體生長影響的模擬分析」, 稀有金屬材料與工程, 第36卷增刊2, 2007。
33. 許承海, 杜善義, 張明福, 孟松鶴, 左洪波, 譚舒平, G. Benik, 「加熱功率波動對SAPMAC法晶體生長的影響」, 人工晶體學報, 第36卷第2期, 2007。
34. G.G. Wang, M.F. Zhang, H.B. Zuo, C.H. Xu, H.E. Xiao, J.C. Han, “Dislocation analysis for large-sized sapphire single crystal grown by SAPMAC method”, Chinese Journal of Structural Chemistry 26, P1332, 2007.
35. S.E. Demina, E.N. Bystrova, V.S. Postolov, E.V. Eskov, M.V. Nikolenko, D.A. Marshanin, V.S. Yuferev, V.V. Kalaev, “Numerical analysis of sapphire crystal growth by the Kyropoulos technique”, Opt. Mater. 30, P62, 2007.
36. S.E. Demina, E.N. Bystrova, M.A. Lukanina, V.M. Mamedov, V.S. Yuferev, E.V. Eskov, M.V. Nikolenko, V.S. Postolov, V.V. Kalaev, “Use of numerical simulation for growing high-quality sapphire crystals by the Kyropoulos method”, J. Cryst. Growth 310, P1443, 2008.
37. S.E. Demina, V.V. Kalaev, “3D unsteady computer modeling of industrial scale Ky and Cz sapphire crystal growth”, J. Cryst. Growth 320, P23–27, 2011.
38. W.J. Lee, Y.C.Lee, H.H.Jo, Y.H.Park, “Effect of crucible geometry on melt convection and interface shape during Kyropoulos growth of sapphire single crystal”, J. Cryst. Growth 324, P248–254, 2011.
39. M.S. Akselrod, F. J. Bruni, “Modern trends in crystal growth and new applications of sapphire”, J. Cryst. Growth, In Press, Corrected Proof, 2012.
40. M.I. Musatov, in: Book of Lectures at the 1st International Workshop on Crystal Growth Technology, Switzerland, 1998.
41. T. Tsukada, K. Kakinoki, M. Hozawa, N. Imaishi, K. Shimamura, T. Fukuda, “Numerical and experimental studies on crack formation in LiNb03 single crystal”, J. Crystal Growth 180, P543, 1997.
42. N. Miyazaki, H. Uchida, T. Tsukada, T. Fukuda, “Quantitative assessment for cracking in oxide bulk single crystals during Czochralski growth: development of a computer program for thermal stress analysis”, J. Crystal Growth 162, P83, 1996.
43. M. Kobayashi, T. Tsukada, M. Hozawa, 2002, Effect of internal radiation on thermal stress fields in CZ oxide crystals, J. Cryst. Growth 241, P241, 2002.
44. M.F. Modest, Radiative Heat Transfer, Academic Press, Amsterdam , Boston, p. 257, 2003.
45. H. Henry, A.A. Stavros, “Mathematical modeling of solidification and melting: A review,” Modelling Simul. Mater. Sci. Eng., Vol.4, pp.371-394, 1996.
46. Brewster, MQ, Thermal Radiative Transfer and Properties, pp. 502-510. John Wiley & Sons, New York. 1992.
47. D. Vizman, I. Nicoara, G. Muller, “Effects of temperature asymmetry and tilting in the vertical Bridgman growth of semi-transparent crystals”, J. Cryst. Growth 212, P334, 2000.
48. C.H. Xu, M.F. Zhang, S.H. Meng, J.C. Han, G.G. Wang, H.B. Zuo, “Temperature field design, process analysis and control of SAPMAC method for the growth of large size sapphire crystals”, Cryst. Res. Technol. 42, P751, 2007.
49. A.E. Kokh, V.A. Vlezko, and K.A. Kokh, “Control over the Symmetry of the Heat Field in the Station for Growing LBO Crystals by the Kyropoulos Method”, Instruments and Experimental Techniques 52, P747, 2009.
50. http://thermaltechnology.com/pdf/TTL_Model_K1_Sapphire_Grower.pdf51.
51. J.F. Nye, Physical properties of crystals : their representation by tensors and matrices, 1957.
52. T.M. Regan, D.C. Harris, D.W. Blodgettd, K.C. Baldwin, J.A. Miragliotta, M.E. Thomas, M.J. Linevsky, J.W. Giles, T.A. Kennedy, Mohammad Fatemi, David R Blackf, K.Peter D Lagerlofg, “Neutron irradiation of sapphire for compressive strengthening. II. Physical properties changes”, Journal of Nuclear Materials, Volume 300, Issue 1, P47–56, 2002.
53. W. M. Yim, R. J. Paff, “Thermal expansion of AlN, sapphire, and silicon”, J. Appl. Phys. 45, 1456, 1974.
54. D.C. Harris, Materials for Infrared Windows and Domes: Properties and Performance, SPIE press, 1999.
55. Y.Q. Long, S. Cen, Z.F. Long, Advanced finite element method in structural engineering, Beijing Tsinghua Univ. Press Berlin Heidelberg New York, NY Springer, 2009.
56. COMSOL 3.5a, Multiphysics User’s Guide.
57. T. Vodenitcharova, L.C. Zhang, I. Zarudi, Y. Yin, H. Domyo, T. Ho, M. Sato, “The effect of anisotropy on the deformation and fracture of sapphire wafers subjected to thermal shocks”, Journal of Materials Processing Technology 194 52–62, 2007.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2012-6-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明