博碩士論文 993203031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:3.144.90.236
姓名 曾子豪(Zi-hao Zeng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 釔摻雜在SrCeO3之電導率及化學穩定性影響
(Electrical Conductivity and Chemical Stability of Yttrium Doped SrCeO3)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鍶鈰氧化物有利於當作固態氧化物氫傳輸膜(SOHTM)之材料,導因於其擁有高的電子及質子電導率。固態氧化物氫傳輸膜用來萃取天然氣或石化燃料中的氫氣,有幾點條件須滿足方能維持運作:對於氫氣需有高選擇性,具備足夠機械強度以抵抗膜兩端的壓力差,在高水氣、二氧化碳及硫化物分壓下須有良好的化學穩定性。本實驗所使用摻雜釔之鍶鈰氧化物(SrCe1-xYxO3-δ, x=0, 0.05, 0.1)是以檸檬酸-EDTA方法製備,材料之微結構以X光繞射儀(XRD)、場發掃描式電子顯微鏡(FE-SEM)及穿透式電子顯微鏡(TEM)來做觀察。材料之電導率使用兩點式電阻量測,化學穩定性則在CO2氣氛下處理後觀察實驗結果。由1000°C瑕燒所得之粉體經XRD鑑定顯示為不含其他相之純相。在導電率方面,鍶鈰氧化物電導率隨著釔摻雜含量增加而提升。此外在低於700°C下,質子傳導主導大部分的傳導。而在高於700°C溫度時,電子傳導為總電導率之主要貢獻。在CO2化學穩定性實驗中,穩定性隨釔摻雜含量增加而下降。
摘要(英) Strontium-cerium oxides are beneficial for solid oxide hydrogen transport membranes (SOHTMs) because of their relatively high electrical and protonic conductivities. SOHTMs for the purpose of extraction of hydrogen from supplied gas mixtures are required to be: high selectivity for hydrogen but not others; mechanically strong enough to resist differential pressures across them; chemically stable under high partial pressure of moisture, carbon dioxide and sulfides; In this study, yttrium substituted strontium cerate (SrCe1-xYxO3-δ, x=0, 0.05, 0.1) was prepared by Citrate-EDTA complexing method. The microstructures were identified using X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). Electrical conductivity was measured by two-point probe and chemical stability was examined under CO2 atmosphere. Preliminary results from XRD showed no detectable impurity phases when powders were calcined at 1000℃. The electrical conductivity increased as concentration of doped Y increased. However, At lower temperature (<700°C), the protonic conductivity dominated the total conductivity. At high temperature (>700°C), the electronic conductivity dominated the total conductivity. The chemical stability under CO2 was significantly to lose as more Y was doped into strontium cerates.
關鍵字(中) ★ 鈣鈦礦
★ 氫傳輸膜
★ 化學穩定性
★ 電導率
關鍵字(英) ★ HTM
★ Perovskite
★ Conductivity
★ Chemical Stability
論文目次 摘要....................................................i
Abstract...............................................ii
致謝..................................................iii
目錄...................................................iv
圖目錄................................................vii
表目錄..................................................x
第一章 前 言............................................1
 1-1 簡介..............................................1
 1-2 研究目的及動機....................................2
第二章 文獻回顧.........................................5
 2-1 固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC)...5
  2-1-1 電解質材料....................................8
  2-1-2 陰極材料.....................................10
  2-1-3 陽極材料.....................................13
 2-2 質子及氫傳輸膜(Proton/Hydrogen Transport Membrane, PTM/HTM)...............................................15
  2-2-1 HTM材料......................................18
  2-2-2 鈣鈦礦結構 (Perovskite)......................20
第三章 實驗方法與設備..................................27
 3-1 實驗流程.........................................27
 3-2 實驗設備.........................................27
 3-3 粉體及試片製備...................................28
  3-3-1 粉體製備(溶膠-凝膠, 檸檬酸-EDTA法)...........28
  3-3-2 試片製作(壓錠燒結)...........................29
 3-4材料特性分析......................................30
  3-4-1 X光晶體結構分析.............................30
  3-4-2 TEM分析.....................................30
  3-4-3 粉體粒徑量測................................30
  3-4-4 SEM表面型態觀察.............................31
 3-5化學穩定性分析....................................31
 3-6 電導率量測.......................................31
第四章 實驗結果與討論..................................42
 4-1 XRD分析..........................................42
 4-2 粉體形貌及大小分析...............................43
  4-2-1 TEM分析......................................43
  4-2-2 粒徑分析及Crystal Size分析...................43
 4-3 SEM表面型態分析..................................44
 4-4 化學穩定性分析...................................45
 4-5 電導率分析.......................................47
第五章 結論............................................62
參考文獻...............................................64
參考文獻 [1] X. Qi, Y.S. Lin, "Electrical conduction and hydrogen permeation through mixed proton–electron conducting strontium cerate membranes", Solid State Ionics, Vol. 130, (2000), 149-156.
[2] A.D. J. Larminie, "Fuel cell systems explained", Vol. (2003).
[3] W.R. Grove, "On the Gas Voltaic Battery. Voltaic Action of Phosphorus, Sulphur and Hydrocarbons", Philosophical Transactions of the Royal Society of London, Vol. 135, (1845), 351-361.
[4] X.D. Zhou, S.C. Singhal, "Fuel cells – solid oxide fuel cells | Overview", Encyclopedia of Electrochemical Power Sources, Vol. (2009), 1-16.
[5] S.C. Singhal, "Zirconia electrolyte-based solid oxide fuel cells", Encyclopedia of Materials: Science and Technology (Second Edition), Vol. (2001), 9898-9902.
[6] E. Ivers-Tiffée, "Electrolytes | solid: oxygen ions", Encyclopedia of Electrochemical Power Sources, Vol. (2009), 181-187.
[7] N.M. Sammes, B.R. Roy, "Fuel cells – solid oxide fuel cells | Cathodes", Encyclopedia of Electrochemical Power Sources, Vol. (2009), 25-33.
[8] K.V. Galloway, N.M. Sammes, "Fuel cells – solid oxide fuel cells | Anodes", Encyclopedia of Electrochemical Power Sources, Vol. (2009), 17-24.
[9] H. Iwahara, T. Esaka, H. Uchida, N. Maeda, "Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production", Solid State Ionics, Vol. 3–4, (1981), 359-363.
[10] H. Uchida, H. Yoshikawa, H. Iwahara, "Formation of protons in SrCeO3-based proton conducting oxides. part I. gas evolution and absorption in doped SrCeO3 at high temperature", Solid State Ionics, Vol. 34, (1989), 103-110.
[11] T. Hibino, K. Mizutani, T. Yajima, H. Iwahara, "Evaluation of proton conductivity in SrCeO3, BaCeO3, CaZrO3 and SrZrO3 by temperature programmed desorption method", Solid State Ionics, Vol. 57, (1992), 303-306.
[12] T. Yajima, H. Suzuki, T. Yogo, H. Iwahara, "Protonic conduction in SrZrO3-based oxides", Solid State Ionics, Vol. 51, (1992), 101-107.
[13] M. Cai, S. Liu, K. Efimov, J. Caro, A. Feldhoff, H. Wang, "Preparation and hydrogen permeation of BaCe0.95Nd0.05O3−δ membranes", Journal of Membrane Science, Vol. 343, (2009), 90-96.
[14] R.J. Phillips, N. Bonanos, F.W. Poulsen, E.O. Ahlgren, "Structural and electrical characterisation of SrCe1−xYxOξ", Solid State Ionics, Vol. 125, (1999), 389-395.
[15] S.D. Flint, R.C.T. Slade, "Variations in ionic conductivity of calcium-doped barium cerate ceramic electrolytes in different atmospheres", Solid State Ionics, Vol. 97, (1997), 457-464.
[16] 黃鎮江, "燃料電池", 滄海書局, Vol. 3, (2008).
[17] R.J. Gorte, J.M. Vohs, "Nanostructured anodes for solid oxide fuel cells", Current Opinion in Colloid & Interface Science, Vol. 14, (2009), 236-244.
[18] W.Z. Zhu, S.C. Deevi, "A review on the status of anode materials for solid oxide fuel cells", Materials Science and Engineering: A, Vol. 362, (2003), 228-239.
[19] J.W. Phair, S.P.S. Badwal, "Review of proton conductors for hydrogen separation", Ionics, Vol. 12, (2006), 103-115.
[20] C.W. Tanner, A.V. Virkar, "Instability of BaCeO3 in H2O-Containing atmospheres", J. Electrochem. Soc., Vol. 143, (1996), 1386-1389.
[21] Y. Li, R. Gemmen, X. Liu, "Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes", J. Power Sources, Vol. 195, (2010), 3345-3358.
[22] W. Zhou, R. Ran, Z. Shao, "Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review", J. Power Sources, Vol. 192, (2009), 231-246.
[23] X. Wei, Y.S. Lin, "Protonic and electronic conductivities of terbium doped strontium cerates", Solid State Ionics, Vol. 178, (2008), 1804-1810.
[24] A. Franco, T. Pereira Alves, E. de Oliveira Lima, E. da Silva Nunes, V. Zapf, "Enhanced magnetization of nanoparticles of MgxFe(3-x)O4 (0.5≤ x ≤1.5) synthesized by combustion reaction", Applied Physics A: Materials Science & Processing, Vol. 94, (2009), 131-137.
[25] M.M. Elbaccouch, S. Shukla, N. Mohajeri, S. Seal, T.R. A, "Microstructural analysis of doped-strontium cerate thin film membranes fabricated via polymer precursor technique", Solid State Ionics, Vol. 178, (2007), 19-28.
[26] G. Etchegoyen, T. Chartier, A. Julian, P. Del-Gallo, "Microstructure and oxygen permeability of a La0.6Sr0.4Fe0.9Ga0.1O3−δ membrane containing magnesia as dispersed second phase particles", Journal of Membrane Science, Vol. 268, (2006), 86-95.
[27] A.N. Shirsat, K.N.G. Kaimal, S.R. Bharadwaj, D. Das, "Thermodynamic stability of SrCeO3", J. Solid State Chem., Vol. 177, (2004), 2007-2013.
[28] W.-C. Lee, C.-Y. Huang, L.-K. Tsao, Y.-C. Wu, "Chemical composition and tolerance factor at the morphotropic phase boundary in (Bi0.5Na0.5)TiO3-based piezoelectric ceramics", J. Eur. Ceram. Soc., Vol. 29, (2009), 1443-1448.
[29] N. Sammes, R. Phillips, A. Smirnova, "Proton conductivity in stoichiometric and sub-stoichiometric yittrium doped SrCeO3 ceramic electrolytes", J. Power Sources, Vol. 134, (2004), 153-159.
[30] J. Liang, L.L. Mao, L. Li, W.H. Yuan, "Protonic and Electronic Conductivities and Hydrogen Permeation of SrCe0.95-xZrxTm0.05O3-δ", Chin. J. Chem. Eng., Vol. 18, (2010), 506-510.
[31] I. Kosacki, H.L. Tuller, "Mixed conductivity in SrCe0.95Yb0.05O3 protonic conductors", Solid State Ionics, Vol. 80, (1995), 223-229.
[32] Wikipedia. Goldschmidt Tolerance Factor. Available: http://en.wikipedia.org/wiki/Goldschmidt_Tolerance_Factor
指導教授 李雄(Shyong Lee) 審核日期 2012-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明