博碩士論文 993203096 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.222.115.120
姓名 楊榮勛(Jung-hsun Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 不同空調送風方式對於公共空間熱舒適度影響之模擬研究
(The Numerical Study for the Influences of Thermal Comfort with Varience Air Supply Modes in Public Space)
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 啟動室內空調對空間進行降溫,若考慮空間中人數及所在位置,以改變空調的運作模式,即可減省空調所需能源。本研究將利用計算流體力學(CFD)的方法,以改變出風口開啟數量,配合不同出風流速、溫度及角度,探討冷卻目標物的所在位置變化如:出風口正下方、兩個出風口之間、四個出風口之間,觀察熱舒適度的影響程度。
  出風口正下方的區域降溫,使目標區域達到舒適範圍且節省能源,以單一出風口表現較佳,因為多開啟出風口,使流場中的渦流變多,提高冷熱空氣混合,造成目標區域熱舒適度值偏高。另外以出風口、回風口與室內之溫度差及流量估算空調能源損耗,在兩個出風口之間的區域降溫,同樣維持目標區域在舒適範圍,挑選較節省能源的參數,以單一出風口配合出風角度表現較佳,而在四個出風口之間則以雙出風口配合出風角度表現較佳。
  考量熱舒適度計算中的流速、溫度兩個變數,以改變出風口溫度對熱舒適度影響較大,且降低出風口溫度比降低流速節省的能源來得多。而空調運作初期以出風口低流速、低溫下較節省能源,長時間以提高出風口流速、溫度較節能。
摘要(英) The cooling of space depends on the configuration of the air conditioners. Considering the numbers of persons and their positions, we can change the mode of operation to reduce the energy consumption. In this study, the computational fluid dynamics (CFD) methods are used to analyze the influences of thermal comfort on the cooling target at different locations, such as, the location under inlet, the location between two inlets and the location on the center of four inlets by various working parameters, such as: the numbers of inlets at different velocities and temperature.
  When the cooling target is under the inlet, results show that a single inlet is better to yield better thermal comfort and reduce energy cost. This is beacause that the increasing of the number of air inlet generates lots of turbulence in the flow field, which mix hot and cold air and therefore cause the deterioration of thermal comfort. The assessment of energy efficiency depends on the temperature and velocity in inlet, outlet, and the inside environment. When the cooling target is in the location bwtween two inlets, the best way for the target to maintain the same thermal comfort level but reduce the energy comsuption is to open one inlet with a certain angle. When the target is on the center of the four inlets, it is better to open two inlets with certain angles to yield better thermal comfort and reduce energy comsuption.
  Comparing the influences of velocity and temperature on thermal comfort, by it is found that the temperature of the inlet has larger impact than the velocity of the inlet. Withing the thermal comfort region, reducing the inlet temperature will save the energy comsumption more than reducing the inlet velocity. For the purpose of reducing the energy comsuption, the best way is to feed air with low temperature and low velocity in the beginning, and then feed air with a higher temperature and velocity after the temperature reaching a certain value.
關鍵字(中) ★ 計算流體力學
★ 空調
★ 熱舒適度
關鍵字(英) ★ Thermal Comfort
★ CFD
★ Air Conditioner
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 VIII
符號說明 XX
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-2-1 空調運作方式 3
1-2-2 熱評估方式 5
1-2-3 汙染物濃度指標與換氣指標 8
1-2-4 室內流動數值模擬文獻 9
1-2-5 PMV熱舒適度指標文獻 13
1-3 研究目的 18
第二章 理論模式 20
2-1 物理模型與基本假設 20
2-2 統御方程式 21
2-2-1 質量守恒方程式 21
2-2-2 動量守恒方程式 21
2-2-3 能量守恆方程式 22
2-2-4 傳輸方程式 22
2-3 紊流模型 23
2-4 標準壁面函數(Standard wall function) 24
第三章 數值方法 25
3-1 使用軟體 25
3-2 Design Modeler與網格劃分平台模組 25
3-3 Fluent模組 26
3-4 方程式離散方法 26
3-5 疊代求解與收斂條件設定 28
3-6 邊界條件與起始條件設定 29
第四章 結果與討論 31
4-1 模型驗證 31
4-1-1 網格密度測試 32
4-1-2 時間間距長度測試 33
4-1-3 暫態與穩態的吻合性 34
4-2 冷卻整體室內空間(十二個出風口) 35
4-3 冷卻目標物在出風口正下方 40
4-3-1 開啟單一出風口 41
4-3-2 開啟雙出風口 43
4-4 冷卻目標物在兩個出風口之間 44
4-4-1 開啟單一出風口配合不同出風角度 45
4-4-2 開啟雙出風口配合不同出風角度 48
4-5 冷卻目標物在四個出風口之間 51
第五章 結論與未來展望 54
5-1 結論 54
5-2 未來展望 55
參考文獻 56
參考文獻 〔1〕葉瑲郎,冷凍空調工程,三民書局,台北,台北,(1980)
〔2〕許守平,冷凍空調原理與工程,全華,台北,(1995)
〔3〕袁秀玲,現代制冷空調理論應用與新技術,西安交通大學,西安,(2009)
〔4〕李先庭,趙彬,室內空氣流動數值模擬,機械工業出版社,北京,(2009)
〔5〕邱建宏,“不同空調通風條件對於室內空間流場之CFD模擬”,國立中央大學土木工程學系碩士論文,(2010)
〔6〕葉歆,建築熱環境,淑馨出版社,台北,(1997)
〔7〕F. C. Houghten, C. P. Yaglou, “Determination of the comfort zone”, ASHRAE Research Report No.673, ASHRAE Transactions, Vol.44, pp.361-384, (1923)
〔8〕H.S. Belding, T.F. Hatch, “Index for evaluating heat stress in terms of resulting physiological strains”, Heat Piping Air Condition, Vol.27, pp.129-136, (1955)
〔9〕行政院勞工委員會勞工安全衛生研究所,高溫作業勞工熱暴露劑量之調查研究,行政院勞工委員會勞工安全衛生研究所,(1994)
〔10〕ISO, “Ergonomics of the thermal environment-analytical determination and interpretation of thermal comfort using calculation of PMV and PPD indices and local thermal comfort criteria”, ISO 7730,(2005)
〔11〕B.W. Olesen, “Introduction to thermal comfort standards to the proposed new version of EN ISO 7730”, Journal of Building and Environment ,Vol. 34. pp.537-548,(2002)
〔12〕ASHRAE, “Thermal environmental conditions for human occupancy”, ASHRAE Standard 55, (2004)
〔13〕G.M. Master 著,葉欣誠 譯,環境工程與科學概論,五南,台北市,(2002)
〔14〕P.V. Nielsen, “English translation: flow in air condition room”, Ph.D. thesis ,Technical University of Demark,(1976)
〔15〕P.V. Nielsen, A. Restivo, J.H. Whitelaw, “The velocity characteristics of ventilated room”, Journal of Fluids Engineering, Vol.100, pp.291-298, (1978)
〔16〕P.V. Nielsen, A. Restivo, J.H. Whitelaw, “Buoyancy affected flows in ventilated room”, Journal of Heat and Mass Transfer, Vol. 2, pp.115-127,(1979)
〔17〕S. Murakami, S. Kato, “Numerical and experimental study on room airflow-3D predictions using the k-ε turbulence model”, Journal of Building and Environment ,Vol. 24, pp.85-97,(1989)
〔18〕S. Murakami, S. Kato, H. Nakagawa, “Numerical prediction of horizontal nonisothermal 3-D jet in room based on the k-ε model”, ASHRAE Transactions Vol.97, Pt.1, (1991)
〔19〕Q. Chen, “Prediction of room air motion by Reynolds-stress models”, Journal of Building and Environment ,Vol. 31,pp.233-244,(1996)
〔20〕R.Cheesewright, K.J. King, S. Ziai, “Experimental data for the validation of computer codes for the prediction of two-dimensional buoyant cavity flow. In significant questions in buoyancy affected enclosure or cavity flow”, Journal of ASME, Vol.60, pp.75-81,(1986)
〔21〕A. Restivo, “Turbulent flow in ventilated room”, University of London, Ph.D. thesis, (1979)
〔22〕D. Cooper, D.C. Jackson, B.E. Launder, G.X. Liao, “Impinging jet studies for turbulence model assessment. Flow-field experiments”, International Journal of Heat and Mass Transfer, Vol. 36, pp.2675-2684, (1993)
〔23〕R.M. Susin, G.A. Lindner, V.C. Mariani, K.C. Mendonca, “Evaluating the influence of the width of inlet slot on the prediction of indoor airflow : Comparison with experimental data”, Journal of Building and Environment , Vol. 44, pp.971-986,(2009)
〔24〕K.W.D. Cheong, E. Djunaedy, Y.L. Chua, “Thermal comfort study of an air-conditioned lecture theatre in the tropics”, Journal of Building and Environment , Vol. 38, pp.63-73,(2003)
〔25〕S. Murakami, S. Kato, T. Kim, “Indoor climate design based on CFD coupled simulation of convection, radiation, and HAVC control attaining a given PMV value”, Journal of Building and Environment , Vol. 36, pp.701-709,(2001)
〔26〕L. Zhou, F. Haghighat, “Optimization of ventilation systems in office environment, part II: results and discussions”, Journal of Building and Environment ,Vol.44, pp.657-665,(2009)
〔27〕F.H. Rohles, R.R. Nelvins, “The nature of thermal comfort for sedentary man”, ASHRAE Transactions, Vol. 77, pp.239-246, (1971)
〔28〕F.H. Rohles, “The revised model comfort envelope”, ASHRAE Transactions, Vol. 79, pp.52-59, (1973)
〔29〕P.O. Fanger, Thermal comfort-analysis and applications in environmental engineering, McGraw-Hill Book Company, New York,(1972)
〔30〕H.B. Awbi, “Application of computational fluid dynamics in room ventilation”, Journal of Building and Environment, Vol. 24, pp.73-84,(1989)
〔31〕H.I. Henderson, K. Rengarajan, “The impact of comfort control on air conditioner energy use in humid climates”, ASHRAE Transactions, Vol. 98, pp.104-112,(1992)
〔32〕S. Funakoshi, K. Matsui, “PMV-based train air-conditioning control system”, ASHRAE Transactions, Vol. 101, pp.423-430,(1994)
〔33〕S. Liu, X. He, “A distribution-parameter-model approach to optimal comfort control in air conditioning systems”, American Control Conference, Vol. 3, pp. 3435-3458,(1994)
〔34〕Fluent User’s Guide , Release 6.3,(2006)
〔35〕B.E. Launder, D.B. Spalding, “The numerical computation of turbulent flows”, Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp.269-289,(1974)
〔36〕李人憲,有限體積法基礎,國防工業出版社,北京,(2005)
〔37〕王瑞金,張凱,王剛,Fluent技術基礎與應用實例—CAD/CAM/CAE實用技術,清華大學出版社,北京,(2007)
指導教授 洪勵吾(Lih-Wu Hourng) 審核日期 2012-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明