博碩士論文 963303001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.129.253.65
姓名 林育賢(Yu-Hsien Lin)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 垂直式振動床中漿態系統下不同黏度間隙流體對大顆粒與其動態行為的影響
(The Brazil-nut effect in a quasi-2D vertical vibrated granular bed, in slurry system the larger particle with difference viscosity of interstitial liquid)
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文以實驗的方法探討在漿態系統下,類二維顆粒振動床內,不同黏度的間隙流體對於顆粒床中粒徑較大的大顆粒(或者稱為Intruder)的巴西豆現象之影響。本研究以高速攝影機擷取大顆粒在顆粒床裡的動態行為,並配合影像技術與粒子追蹤方法得到大顆粒隨著時間而上升之動態過程。
本研究發現在漿態系統下,間隙流體的黏度對於大顆粒上升的動態行為扮演重要的角色,當振動條件固定,間隙流體黏度越大時,大顆粒的上升時間與所受到的阻力都有隨間隙流體黏度增加而變大的趨勢,而上升速度與滲透長度則呈現相反趨勢。也發現無論在乾或濕系統下,大顆粒之上升時間隨著無因次振動加速度減少而增加,隨著振動頻率增加而增加。並且大顆粒之上升速度會隨著無因次振動加速度減少而減少,隨著振動頻率增加而減少。
摘要(英) This study investigates experimentally the Brazil-nut effect in a quasi-2D vertical vibrated granular bed, in slurry system the larger particle (or the so-called intruders) with difference viscosity of interstitial liquid. The Brazil nut effect means the larger particle rises to the top of the container and the smaller granular move to the bottom. The dynamics of the larger particle is recorded by using a high speed camera. By using image processing technology and the particle tracking method, the rise dynamic of the intruder was successfully measured and analyzed.
This study demonstrates that the interstitial fluid viscosity plays an important role in the rise dynamics of intruder in slurry system. The effects of vibration conditions and viscosity of interstitial liquid on the dynamics of intruder are investigated in the study. The results show that the rising time and drag force increases with increasing viscosity of interstitial liquid. But the rising velocity and penetration length decreases with increasing viscosity of interstitial liquid. It also shows that the rising time becomes slower as the smaller dimensionless vibration acceleration and the larger vibration frequency is applied in the granular system. Finally the rising velocity is enhanced with the increase of dimensionless vibration acceleration and is reduced with the increase of vibration frequency.
關鍵字(中) ★ 間隙流體黏度
★ 粒子流
★ 巴西豆現象
★ 振動床
★ 漿態系統
關鍵字(英) ★ Granular flow
★ Slurry System
★ Vibrated Bed
★ Braz
論文目次 摘要 ........................................................................................................................ I
Abstract ................................................................................................................. II
目錄 ..................................................................................................................... III
附表目錄 .............................................................................................................. V
附圖目錄 ............................................................................................................. VI
符號說明 .......................................................................................................... VIII
第一章 簡介 ......................................................................................................... 1
1.1 粒子流簡介 ................................................................................................................ 1
1.2 粒子流與一般流體之異同 ........................................................................................ 2
1.3 顆粒體材料的運動現象 ............................................................................................ 3
1.4 顆粒體材料的分離現象 ............................................................................................ 5
1.4.1 巴西豆現象與逆巴西豆現象 ................................................................................ 5
1.4.2 單一大顆粒置於顆粒床內的分離現象 ................................................................ 8
1.4.3 液體作用力對單一大顆粒體材料動態行為與分離現象的影響 ...................... 11
1.5 研究動機 .................................................................................................................. 13
第二章 實驗設備與方法 ................................................................................... 15
2.1 實驗設備 .................................................................................................................. 15
2.2 實驗參數說明 .......................................................................................................... 18
2.3 實驗流程 .................................................................................................................. 18
2.4 影像分析程式 .......................................................................................................... 19
2.5 分析參數 .................................................................................................................. 20
IV
2.6 誤差分析 .................................................................................................................. 21
第三章 結果與討論 ........................................................................................... 22
3.1 間隙流體黏度對大顆粒粒子與其動態行為的影響 .............................................. 22
3.2 間隙流體黏度對大顆粒粒子上升時間的影響 ...................................................... 23
3.3 間隙流體黏度對大顆粒粒子上升速度的影響 ...................................................... 24
3.4 在漿態系統下振動頻率對大顆粒粒子與其動態行為的影響 .............................. 26
3.5 在漿態系統下振動頻率對大顆粒粒子與其上升時間的影響 .............................. 27
3.6 在漿態系統下振動頻率對大顆粒粒子與其上升速度的影響 .............................. 27
3.7 在漿態系統下振動加速度對大顆粒粒子與其動態行為的影響 .......................... 29
3.8 在漿態系統下振動加速度對大顆粒粒子與其上升時間的影響 .......................... 30
3.9 在漿態系統下振動加速度對大顆粒粒子與其上升速度的影響 .......................... 30
第四章 結論 ....................................................................................................... 32
參考文獻 ............................................................................................................. 33
參考文獻 Aoki, K. M., Akiyama T., Maki Y. and Watanabe T., 1996, “Convective Roll Patterns in
Vertically Vibrated Beds of Granules,” Physical Review E, Vol. 54, pp. 874-883.
Bagnold, R.A., 1954, “Experiments on a Gravity-Free Dispersion of Large Solid Spheres in a
Newtonian Fluid Under Shear, “Proceeding of the Royal Society London, Series A, Vol.
225, pp. 49-63.
Breu, A. P. J., Ensner, H. M., Kruelle, C. A. and Rehberg I., 2003, “Reversing the Brazil-Nut
Effect: Competition Between Percolation and Condensation,” Physical Review Letters,
Vol. 90, 014302.
Brito, R. and Soto, R., 2009, “Competition of Brazil Nut Effect, Buoyancy, and Inelasticity
Induced Segregation in a Granular Mixture,” European Physical Journal Special Topics,
Vol. 179, pp. 207-219.
Campbell, C. S. and Brennen, C. E., 1985, “Chute Flows of Granular Material: Some
Computer Simulations,” Journal of Allied Mechanics, Vol. 52, pp.72-78.
Campbell, C. S. and Brennen, C. E., 1985, “Computer Simulation of Granular Shear Flows,”
Journal of Fluid Mechanicsanism, Vol. 151, pp. 167-188.
Ciamarra, M. P., De Vizia, M. D., Fierro, A., Tarzia, M., Coniglio, A. and Nicodemi, M., 2006,
“Granular Species Segregation Under Vertical Tapping: Effects of Size, Density, Friction,
and Shaking Amplitude,” Physical Review Letters, Vol. 96, 058001.
Clement, C. P., Pacheco-Martinez, H. A., Swift, M. R. and King, P. J., 2010, “The
Water-Enhanced Brazil Nut Effect,” Europhysics Letters, Vol. 91, 54001.
Cooke, W., Warr, S., Huntley, J. M. and Ball, R. C., 1996, “Particle Size Segregation in a
Two-Dimensional Bed Undergoing Vertical Vibration,” Physical Review E, Vol. 53, pp.
2812-2822.
34
Duran, J., Rajchenbach, J. and Clement, E., 1993, “Arching Effect Model for Particle Size
Segregation,” Physical Review Letters, Vol. 70, pp. 2431-2434.
Duran, J., Mazozi, T., Clement, E. and Rajchenbach, J., 1994, “Size Segregation in a
Two-Dimensional Sandpile: Convection and Arching Effects,” Physical Review E, Vol.
50,pp. 5138–5141.
Elperin, T. and Golshtein, E., 1997, “Effects of Convection and Friction on Size Segregation
in Vibrated Granular Beds,” Physica A, Vol. 247, pp. 67-78.
Faraday, M., 1831, “On a Peculiar Class of Acoustical Figures and on Certain Forms
Assumed by Groups of Particles upon Vibrating Elastic Surfaces,” Phil. Trans. R. Soc.,
London, Vol. 52, pp. 299-340.
Fiedor, S.J., Ottion, J.M., 2003, “Dynamics of Axial Segregation and Coarsening of Dry
Granular Materials and Slurries in Circular and Square Tubes,” Physical Review Letters,
Vol. 91, 244301.
Finger, T., Stannarius, R., 2007, “Influences of the Interstitial Liquid on Segregation Patterns
of Granular Slurries in a Rotating Drum,” Physical Review E, Vol. 75, 301308.
Gotzendorfer, A., Tai, C. H., Kruelle, C. A., Rehberg, I. and Hsiau S. S., 2006, “Fluidization
of a Vertically Vibrated Two-Dimensional Hard Sphere Packing: A Granular
Meltdown,” Physical Review E, Vol. 74, 011304.
Hong, D. C., Quinn, P. V. and Luding, S., 2001, “Reverse Brazil Nut Problem: Competition
Between Percolation and Condensation,” Physical Review Letters, Vol. 86, pp.
3423-3426.
Hsiau, S. S. and Yu, H. Y., 1997, “Segregation Phenomena in a Shaker,” Powder Technology,
Vol. 93, pp. 83-88.
Hsiau, S. S. and Pan, S. J., 1998, “Motion State Transitions in a Vibrated Granular Bed,”
Powder Technology, Vol. 96, pp.219-226.
Hsiau, S. S., Wu, M. H. and Chen, C. H., 1998,“Arching Phenomena in a Vibrated Granular
35
Bed,” Powder Technology, Vol. 99, pp. 185-193.
Hsiau, S. S. and Chen, C. H., 2000, “Granular Convection Cells in a Vertical Shaker,” Powder
Technology, Vol. 110, pp. 239-245.
Hsiau, S.S. and Tai, C.H., 2004, “Dynamic Behaviors of Powders in a Vibrating Bed,”
Powder Technology., Vol. 139, No. 3, pp. 221-232.
Huerta, D. A. and Ruiz-Suarez, J. C., 2004, “Vibration-Induced Granular Segregation: A
Phenomenon Driven by Three Mechanisms,” Physical Review Letters, Vol. 96,
pp.219-226.
Jain, N., Ottino, J.M., Lueptow, R.M., 2004, “Effect of Interstitial Fluid on a Granular
Flowing Layer,” Journal of Fluid Mechanics. 508, pp. 23-44.
Jullien, R., Meakin, P. and Parlovitch, A., 1992, “Three-Dimensional Model for Particle-Size
Segregation by Shaking,” Physical Review Letters., Vol. 69, pp. 640-643.
Jullien, R., Meakin, P. and Pavlovitch, A., 1993, “3-Dimensional Model for Particle-Size
Segregation by Shaking - Reply,” Physical Review Letters., Vol. 70 , pp.2195.
Knight, J. B., Jaeger, H. M. and Nagel, S. R., 1993, “Vibration-Induced Size Separation in
Granular Media: The Convection Connection,” Physical Review Letters, Vol. 92,
114301.
Knight, J. B., Ehrichs, E. E., Kuperman, V. Y., Flint, Jaeger, H. M., and Nagel, S. R., 1996,
“ An Experimental Study of Granular Convection,” Physical Review E., Vol. 54, pp.
5726-5738.
Knight, J. B., 1997, “External Boundaries and Internal Shear Bands in Granular Convection,”
Physical Review E., Vol. 55, No. 5, pp. 6016-6023.
Liao, C. C., Hsiau, S. S., 2009, “Influence of Interstitial Fluid Viscosity on Transport
Phenomenon in Sheared Granular Materials,” Chemical Engineering Science, Vol. 64,
pp. 2562-2569.
36
Liao, C. C., Hsiau, S. S., Tsai, T. H. and Tai, C. H., 2010, “Segregation to Mixing in Wet
Granular Matter under Vibration,” Chemical Engineering Science, Vol. 65, pp.
1109-1116.
Liffman, K., Muniandy, K., Rhodes, M., Gutteridge, D. and Metcalfe, G., 2001, “A
Segregation Mechanism in a Vertically Shaken Bed,” Granular Matter, Vol. 3, pp.
205-214.
Lu, L. S. and Hsiau, S. S., 2008, “DEM Simulation of Particle Mixing in a Sheared Granular
Flow,” Particuology, Vol. 6, pp. 445-454.
Mobius, M. E., Cheng, X., Karczmar, G. S., Nagel, S. R. and Jaeger, H. M., 2004, “Intruders
in the Dust: Air-Driven Granular Size Separation,” Physical Review Letters, Vol. 93,
198001.
Neederman, R. M., 1992, “Statics and Kinematics of Granular Materials,” Cambridge
University Press.
Nahmad-Molinari, Y., Canul-Chay, G. and Ruiz-Suarez, J. C., 2003, “Inertia in the Brazil Nut
Problem,” Physical Review E, Vol. 68, 041301.
Reynolds, O., 1885, “On the Dilatancy of Media Composed of Rigid Particles in Contact,
With Experimental Illustrations,” Philosophical Magazine, Vol. 20, pp. 469-481.
Reynolds, O., 1886, “Experiments Showing Dilatancy, A Property of Granular Materials
Possibly Connected with Gravitation,” Proceedings of Royal Institution of Great Britain,
Vol. 11, pp. 354-363.
Rosato, A. D., Ketherine, J. S., Friedrich, P. and Robert, H. S., 1987, “Why the Brazil Nuts are
on Top: Size Segregation of Particulate Matter by Shaking,” Physical Review Letters,
Vol. 58, pp. 1038-1040.
Saez, A., Vivanco, F. and Melo, F., 2005, “Size Segregation, Convection, and Arching Effect,”
Physical Review E, Vol. 72, 021307.
37
Sánchez1, I., Gutiérrez, G., Zuriguel, I. and Maza, D., 2010, “Sinking of Light Intruders in a
Shaken Granular Bed,” Physical Review E, Vol. 81, 062301.
Shamlou, P.A., 1998, Handling of Bulk Solids, Butterworths, London.
Shinbrot, T. and Muzzio, F. J., 1998, “Reverse Buoyancy in Shaken Granular Beds,” Physical
Review Letters, Vol. 81, pp.4365-4368.
Vanel, L., Rosato, A. D. and Dave R. N., 1997, “Rise-Time Regimes of a Large Sphere in
Vibrated Bulk Solids,” Physical Review Letters, Vol. 78, pp. 1255-1258.
V Zivkovic, M J Biggs, and D H Glass1 2009, “Particle Dynamics in a Vibrated Submerged
Granular Bed as Revealed by Diffusing Wave Spectroscopy,” Journal of Physics D:
Applied Physics. Vol. 42, 245404.
Yan, X., Shi, Q., Hou, M., Lu, K. and Chan, C. K., 2003, “Effects of Air on the Segregation of
Particles in a Shaken Granular Bed,” Physical Review Letters, Vol. 91, 014302.
Yang, S. C., 2006, “Density Effect on Mixing and Segregation Processes in a Vibrated binary
Granular Mixture,” Powder Technology, Vol. 164, pp. 65-74.
指導教授 蕭述三(Shu-San Hsiao) 審核日期 2012-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明