博碩士論文 973303022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:124 、訪客IP:3.135.205.146
姓名 王士銘(Shih-ming Wang)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響
(The effects of cold-rolling on the tensile and fatigue properties of as-extrusion ZK60 alloy)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析★ 超塑性鋁合金5083用於機翼前緣整流罩之研究
★ 輕合金輪圈疲勞測試與分析★ 滾針軸承保持架之有限元分析
★ 鎂合金之晶粒細化與超塑性研究★ 平板式固態氧化物燃料電池穩態熱應力分析
★ 固態氧化物燃料電池連接板電漿鍍膜特性研究★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究
★ 高延性鎂合金之特性及成形性研究★ PEMFC石墨複合雙極板之製程與成份研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) ZK60鎂合金是目前所有商用鎂合金中強度最高的一種,其熱擠製型材的降伏強度達到300MPa,已經超過T6狀態下的7010A鋁合金,與12Mn合金鋼相當。
  本研究之目的為探討ZK60鎂合金經8%冷軋後之微結構、拉伸與疲勞性質。經顯微組織觀察與XRD分析,兩種材料主要相為α-Mg,並伴隨少量MgZn2相。此外,ZK60之晶粒尺寸變化大,判斷其原因為在擠製過程中,材料於不同部位的塑性變形量有所不同,造成再結晶的程度亦不同所致。
  機械性質方面,ZK60擠製原材的降伏強度為229MPa,而擠製ZK60+8% 冷軋,強度提昇至269MPa,顯示冷軋後大量冷加工應變能使強度明顯提昇,提昇率為17.4%。抗拉強度由254MPa,提升到冷軋後的273.5MPa,提升率為7.6%;而材料的延伸率由擠製材48%減少到經8%冷軋延21%。兩者的結果顯示冷軋後,大量的加工應變能使材料的強度提升但延性下降,顯示出典型的加工硬化結果。
  在疲勞測試方面,ZK60擠製原材與擠製ZK60+8% 冷軋兩種材料的疲勞限分別為71MPa和81MPa,疲勞強度提升了14%。
摘要(英) This research focuses on the tensile and fatigue properties of normal and cold-rolled extrusion ZK60 alloy. ZK60 magnesium alloy is a commercial magnesium alloy which is one of highest intensity. Its yield strength of type of hot extrusion reaches 300MPa. Over 7010A aluminum alloy and close with the 12Mn alloy steel. Thus its strength is almost all the material on its advantage in the highest, so ZK60 magnesium alloy used in the transport apparatus.
About microstructure, The two materials are rendering conventional extrusion ZK60 organizational structure, the main crystalline phase is α-Mg but the β phase is not visible because it is too small. However, its grain size varied that causes in the different levels of plastic deformation in different parts of materials, resulting in the levels of recrystallization is also different.
About mechanical properties, the yield strength of ZK60 extrusion original material is 229MPa, the extrusion ZK60 +8% cold-rolled increased to 269MPa, The results show a large number of cold work strain energy can significantly enhance the strength about increase rate of 17.4% after cold-rolled. The tensile strength creased by 7.6% after cold rolling, as 254MPa to 273.5MPa, the average elongation rate decreased from 48% to 21%, results show caused by the cold work strain energy increase.
The fatigue limit of ZK60 extrusion original material and the extrusion of ZK60 +8% cold-rolled is 71MPa (approximately 28% of UTS) and 81MPa (approximately 29.6% of the UTS), a 14% increase in fatigue strength.
關鍵字(中) ★ 抗拉強度
★ 疲勞強度
★ ZK60鎂合金
★ 冷軋延
關鍵字(英) ★ Tensile strength
★ Ultimate strain
★ Fatigue limit
★ Cold-rolled
★ ZK60 magnesium alloys
論文目次 中文摘要................................................................................................................I
Abstract.................................................................................................................II
誌謝.....................................................................................................................III
目錄.....................................................................................................................IV
圖目錄...............................................................................................................VII
表目錄..................................................................................................................X
第一章 緒論.......................................................................................................1
1-1前言.................................................................................................................1
1-2研究動機.........................................................................................................3
第二章 理論基礎與文獻回顧...........................................................................9
2-1鎂合金簡介….................................................................................................9
2-2鎂的六方晶格結構…...................................................................................10
2-3鎂的雙晶結構…...........................................................................................10
2-4添加元素對鎂合金的影響..................................................... .....................11
2-5金屬材料再結晶理論............................................................. .....................13
2-6疲勞斷裂.......................................................................................................14
2-6-1覆變應力與覆變應變..........................................................................15
2-6-2疲勞曲線.............................................................................................16
2-6-3應變-壽命曲線…………...................................................................17
2-6-4高、低週疲勞.....................................................................................17
2-6-5疲勞限(Fatigue Limit).........................................................................18
2-7疲勞裂縫機構...............................................................................................19
2-7-1疲勞裂縫的起始................................................................................19
2-7-2疲勞裂縫拓展....................................................................................19
2-8真實應力(True Stress)和真實應變(True Strain).........................................21
2-9固溶強化、硬化容量與硬化率.....................................................................21
2-10 ZK60鎂合金的研究情形..........................................................................22
第三章 實驗方法與步驟.................................................................................39
3-1實驗材料.......................................................................................................39
3-2實驗步驟.......................................................................................................39
3-2-1 成分分析……………………………………...................................39
3-2-2 試片製備...........................................................................................39
a) 試片冷軋.....................................................................................39
b) 試片尺寸製訂.............................................................................40
c) 試片製作.....................................................................................40
d) 光學顯微鏡(OM)顯微組織觀察................................................40
e) X光繞射儀X-ray diffraction(XRD)分析............................41
3-2-3 硬度試驗...........................................................................................41
3-2-4 拉伸試驗...........................................................................................41
3-2-5 疲勞試驗...........................................................................................42
第四章 結果與討論.........................................................................................48
4-1 OM光學顯微鏡下之微觀組織....................................................................48
4-2 XRD繞射分析..............................................................................................48
4-3 硬度實驗......................................................................................................49
4-4 拉伸實驗.....................................................................................................49
4-4-1拉伸實驗結果比較............................................................................49
4-4-2 應變硬化指數探討............................................................................50
4-5 疲勞結果分析..............................................................................................51
第五章 結論.....................................................................................................58
參考文獻.............................................................................................................59
參考文獻 [1] 史文方、王懷國和周昆,「鎂合金材料研發進展概況」,2011年第2期,中國有色金屬科技信息網,取自www.cnitdc.cn。
[2] 蔡幸甫,「鎂合金成型產業現況及發展趨勢」,工業材料雜誌,2004年7月,211期。
[3] 英大證券研究所:符合低碳趨勢的輕量化材料,電動汽車推廣加速應用,2011年3月,取自http://bg.panlv.net。
[4] 中國有色網:環保節能成時尚,鎂合金助推汽車輕量化優勢突出,2010 年6月,取自http://www.cnmn.com.cn。
[5] 汽車日報:再創新世紀動力典範-BMW X6亞洲首發(四),2008年4月,取自http://tw.autonet.com.tw。
[6] 陳緒宏、于翔,「ZK60鎂合金Gleeble凝固模擬試驗研究」,重慶市計量質量檢測研究所,2006年11月。
[7] Fuchs,H. O.,Metal Fatigue in Engineering,John-Wiley & Sons Inc.,1980。
[8] 曾春華,鄒十踐,疲勞分析方法及應用,中共國防工業出版社,北京,1991。
[9] Ohchida,H.Analysis of Service Failures of Hitachi Products (1970-1975),Hitachi Company Report,July,1979.
[10] Duga,J. J. et. al.,The Economic Effects of Fracture in the United States Part 2,A Report to NBS by Battllle Columbus Laboratories,March,1983.
[11] ASM Speciality Handbook,Magnesium and Magnesium Alloys,ASM International,1999。
[12] Norsk Hydro Databank,Norsk Hydro Research Center Porsgrunn,1996。
[13] R.W.Cahn, P.Haasen and E.J.Kramer,Materials Science and Technology:A Comprehensive Treatment,Vol.8,Structure and Properties of Nonferrous Alloys,K.H.Matucha,VCH,New York,1996。
[14] Jona F and Marcus P M.,“Magnesium under pressure:Structure and Phase Transition”,15 7277,Journal of Physics:Condens Matter,2003。
[15] Robert E and Reed-Hill,Formal Crystallographic Theory of Twinning:Physical Metallurgy Principles,3rd Edition,1994,p.541~547.
[16] J. W. Christian,Nucleation and Growth of Mechanical Twins:The Theory of Transformations In Metals And Alloys,Vol.7,1982,p.777~786.
[17] ASM Handbook,“Metallography:Structure and Phase Diagram”,Vol.8,8th Edition,ASM Metals Handbook,1976,p.314-319。
[18] Kainer K.U. and Bach F Von.,Magnesium Alloys and Technology,Kaiser F(trans),The Current State of Technology and Potential for Further Development of Magnesium Applications,Kainer KU(ed),Weinheim : WILEY-VCH Verlag Gmbh,2003。
[19] T.B. Massalski,“Binary Alloy Phase Diagrams”,2nd Edition, ASM INTERNATIONAL Materials Park,OH,1990,p.1487。
[20] 張永耀,金屬熔銲學,徐氏基金會,台北,1976,p.134-170。
[21] 蔡幸甫,「鎂合金產業技術及市場發展趨勢專題調查」,工院產業經濟與資訊服務中心科技專案成果,2001
[22] C.H. Caceres、C.J. Davidson、J.R. Griffiths and C.L.Newton,“Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy”,Materials Science and Engineering A,vol.325,2002,p.344-355。
[23] C.Shaw and H.Jones,“The contributions of different Alloying additions to hardening in rapidly solidified magnesium alloys”, Materials Science and Engineering A,vol.226-228,1997,p.856~860。
[24] 賴耿陽,非鐵金屬材料,復漢出版社,新竹,1998,p.174-191。
[25] 林文樹等編著,塑性加工學,三民書局,p. 349-356.
[26] Robert E. Reed-Hill and Reza Abbaschian,PHYSICAL METAL LURGY PRINCIPLES,3th EDITION (1973),p.227-271.
[27] J. C. Li,Journal of Physics D:Applied Physics,33 2958 (1962).
[28] 趙少汴、王忠保,抗疲勞設計-方法與數據,機械工業出版社,北京,p.9。
[29] Robert E. Reed-Hill,Slip Bands,Physical Metallurgy Principles, 3rd Edition,1994,p.147~148。
[30] Ibid.,p.725~726。
[31] Ibid.,p.755~760。
[32] C. Laird,Fatigue Crack Propagation,ASTM STP 415,Philadelphia,1967,p.131。
[33] Norman E. Dowling,Mechanical Behavior of Materials,Second Edition,p.125~127
[34] 劉國雄等編著,工程材料科學,全華科技圖書股份有限公司,民國88年10月。
[35] Ji Luoa、Zhi Meia、Wenhuai Tianb、Zhirui Wanga,*,“Diminishing of work hardening in electroformed polycrystalline copper with nano-sized and uf-sized twins”,Materials Science and Engineering:A,2006,vol.441,2006,p.282-290
[36] R. Lapovok、P.F. Thomson、R. Cottam、Y. Estrin,“Processing routes leading to superplastic behaviour of magnesium alloy ZK60”,Materials Science and Engineering:A,vol.410-411,2005,p.390-393。
[37] 彭建、張丁非、楊樁楣、丁培道,「ZK60鎂合金鑄坯均勻化退火研究」,重慶大學、2004。
[38] 余琨、黎文獻、王日初,「熱處理工藝對擠壓變形ZK60鎂合金組織與力學性能的影響」,中南大學,2007。
[39] G.Neite、K.Kubota、K.Higashi and F.Hemann,“Materials Science and Technology”, VCH,Vol.8,1996,p.113
[40] Luo J、Mei Z、Tian WH and Wang ZR.,“Diminishing of work hardening in electroformed polycrystalline copper with nano-sized and uf-sized twins”, Materials Science and Engineering:A,2006;441:282–90。
[41] X.H.Chen、F.S.Pan、J.J.Mao、J.F.Wang、D.F.Zhang、A.T.Tang、J.Peng,“Effect of Heat Treatment on Strain Hardening of ZK60 Mg Alloy”,Materials and Design,Vol.32,pp.1526-1530,2011。
[42] 鍾仕豪,「超輕鎂鋰合金的拉伸與疲勞特性研究」,中央大學,李雄 博士指導、2011。
指導教授 李雄(Shyong Lee) 審核日期 2012-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明